Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 24(24): 13957-61, 2008 Dec 16.
Article in English | MEDLINE | ID: mdl-19360936

ABSTRACT

A versatile two-step method has been developed that allows linking of biomolecules covalently to hydrogen-terminated group-IV semiconductors by means of epoxy-alkenes. First, the terminal C==C double bond of the alkene forms a covalent bond with the silicon, germanium, or diamond surface by UV-mediated hydrosilylation. The terminal oxirane moiety then reacts with the biomolecule. As a model system, we investigated the attachment of an esterase B to a Si(111) surface by means of the linker molecule 1,2-epoxy-9-decene. Samples were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The immobilized enzyme retained its activity and exhibited good long-term stability.


Subject(s)
Epoxy Compounds/chemistry , Esterases/chemistry , Esterases/metabolism , Silicon/chemistry , Models, Molecular , Semiconductors , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...