Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 29(5): 3617-3625, 2022 May.
Article in English | MEDLINE | ID: mdl-35844398

ABSTRACT

Potato cyst nematodes caused by Globodera rostochiensis, are quarantine-restricted pests causing significant yield losses to potato growers. The phytohormone ethylene play significant roles in various plant-pathogen interactions, however, the molecular knowledge of how ethylene influences potato-nematode interaction is still lacking. Precise detection of potato-induced genes is essential for recognizing plant-induced systemic resistance (ISR). Candidate genes or PR- proteins with putative functions in modulating the response to potato cyst nematode stress were selected and functionally characterized. Using real-time polymerase chain reaction (RT-PCR), we measured the quantified expression of four pathogenesis-related (PR) genes, PR2, PR3, peroxidase, and polyphenol oxidase. The activation of these genes is intermediate during the ISR signaling in the root tissues. Using different ethylene concentrations could detect and induce defense genes in infected potato roots compared to the control treatment. The observed differences in the gene expression of treated infected plants are because of different concentrations of ethylene treatment and pathogenicity. Besides, the overexpressed or suppressed of defense- related genes during developmental stages and pathogen infection. We concluded that ethylene treatments positively affected potato defensive genes expression levels against cyst nematode infection. The results emphasize the necessity of studying molecular signaling pathways controlling biotic stress responses. Understanding such mechanisms will be critical for the development of broad-spectrum and stress-tolerant crops in the future.

2.
Front Plant Sci ; 13: 941343, 2022.
Article in English | MEDLINE | ID: mdl-35845674

ABSTRACT

Productivity of maize (Zea mays L.) and nitrogen use efficiency (NUE) as affected by nitrogen application levels and timing were studied. The experimental design was a three-replication randomized complete block design (RCBD). The first factor was nitrogen levels (122, 240, 288 and 336 kg N/ha) and the second factor was nitrogen timing (50% of N at sowing and 50% of N before the first irrigation; T1, 50% of N at sowing and 50% of N before the second irrigation; T2 and 50% of N before the first irrigation and 50% of N before the second irrigation; T3). Results indicated that plant height, ear length, kernel weight, number of grains/rows, number of grains/ear and grain yields all increased significantly as nitrogen levels increased and the level of 336 kg N/ha significantly exhibiting the highest values in both seasons. In terms of nitrogen application time, maize yield parameters such as plant height, ear length, kernel weight/ear, number of grains/rows, number of grains/ear and grain yield were significantly affected by nitrogen timing, with the highest values obtained at T3 while the lowest values obtained at T1 in both seasons. The interaction had a significant impact on plant height and grain yield/ha, with the tallest plants, the highest yields and its components observed at 336 kg N/ha, with 50% of N applied during the first irrigation and 50% of N applied during the second. Furthermore, under the study conditions, NUE decreased dramatically as nitrogen levels increased and increased significantly as nitrogen application time changed.

3.
Front Plant Sci ; 13: 791066, 2022.
Article in English | MEDLINE | ID: mdl-35615130

ABSTRACT

Rice (Oryza sativa L.) is one of the major cereal crops worldwide with wheat and maize. A total of two field experiments were performed to evaluate the response of some rice cultivars to various foliar zinc (Zn) concentrations based on different measurements, such as agronomic, yield, yield compounds, and grain technological parameters. The experimental layout was a split plot in three replicates; the five rice cultivars (Skaha 101, Giza178, Yasmeen, Fourate, and Amber 33) were distributed in the main plots while the four foliar applications of Zn (1,500, 2,000, 2,500 mg/L besides spray water) were occupied the sub-plots. The findings showed significant differences among the five rice cultivars regarding plant height, grain yield, straw yield, biological yield, harvest index, 1,000-grain weight, panicle length, protein percentage, and grain Zn content. There is a significant effect of Zn on all plant attributes. A significant interaction between rice cultivars and foliar application of Zn was observed, whereas fertilizing Giza 178 with foliar application of Zn at the rate of 2,500 mg/L achieved the highest mean values of grain yield and straw yield, biological yield, harvest index, 1,000-grain weight, panicle length, protein %, and Zn content followed by Sakha 101 with Zn application at the rate of 2,000 mg/L, respectively, in both seasons. The rice cultivars significantly differed in hulling (%), broken (%), hardness, grain length, shape, amylose (%), gel consistency, and gelatinization temperature. Unfortunately, the commercial Zn product used was genotoxic to pollen grains with a higher rate of Zn. Aberrations were observed such as stickiness, ultrastructural changes in the exterior and interior walls, partially or fully degenerated grains, and shrunken and unfilled grains. This study concluded that using Zn application at the rate of 2,000 mg/L to protect human and environmental health, the side effects and toxicity of the local commercial Zn product market should be investigated before making recommendations to farmers.

SELECTION OF CITATIONS
SEARCH DETAIL
...