Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511538

ABSTRACT

Residue-specific incorporation of non-canonical amino acids (ncAAs) introduces bio-orthogonal functionalities into proteins. As such, this technique is applied in protein characterization and quantification. Here, we studied protein expression with three methionine analogs, namely photo-methionine (pMet), azidohomoalanine (Aha) and homopropargylglycine (Hpg), in prototrophic E. coli BL-21 and auxotrophic E. coli B834 to maximize ncAA content, thereby assessing the effect of ncAAs on bacterial growth and the expression of cytochrome b5 (b5M46), green fluorescence protein (MBP-GFP) and phage shock protein A. In auxotrophic E. coli, ncAA incorporation ranged from 50 to 70% for pMet and reached approximately 50% for Aha, after 26 h expression, with medium and low expression levels of MBP-GFP and b5M46, respectively. In the prototrophic strain, by contrast, the protein expression levels were higher, albeit with a sharp decrease in the ncAA content after the first hours of expression. Similar expression levels and 70-80% incorporation rates were achieved in both bacterial strains with Hpg. Our findings provide guidance for expressing proteins with a high content of ncAAs, highlight pitfalls in determining the levels of methionine replacement by ncAAs by MALDI-TOF mass spectrometry and indicate a possible systematic bias in metabolic labeling techniques using Aha or Hpg.


Subject(s)
Escherichia coli , Methionine , Methionine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Alanine , Amino Acids/metabolism , Proteins/chemistry , Racemethionine/metabolism
2.
Molecules ; 27(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744847

ABSTRACT

Analysis of protein glycosylation is challenging due to micro- and macro-heterogeneity of the attached glycans. Hydrophilic interaction liquid chromatography (HILIC) is a mode of choice for separation of intact glycopeptides, which are inadequately resolved by reversed phase chromatography. In this work, we propose an easy-to-use model to predict retention time windows of glycopeptides in HILIC. We constructed this model based on the parameters derived from chromatographic separation of six differently glycosylated peptides obtained from tryptic digests of three plasma proteins: haptoglobin, hemopexin, and sex hormone-binding globulin. We calculated relative retention times of different glycoforms attached to the same peptide to the bi-antennary form and showed that the character of the peptide moiety did not significantly change the relative retention time differences between the glycoforms. To challenge the model, we assessed chromatographic behavior of fetuin glycopeptides experimentally, and their retention times all fell within the calculated retention time windows, which suggests that the retention time window prediction model in HILIC is sufficiently accurate. Relative retention time windows provide complementary information to mass spectrometric data, and we consider them useful for reliable determination of protein glycosylation in a site-specific manner.


Subject(s)
Chromatography, Reverse-Phase , Glycopeptides , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Glycopeptides/chemistry , Glycosylation , Hydrophobic and Hydrophilic Interactions
3.
Anal Bioanal Chem ; 413(16): 4321-4328, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34002272

ABSTRACT

Glycoproteomics is a challenging branch of proteomics because of the micro- and macro-heterogeneity of protein glycosylation. Hydrophilic interaction liquid chromatography (HILIC) is an advantageous alternative to reversed-phase chromatography for intact glycopeptide separation prior to their identification by mass spectrometry. Nowadays, several HILIC columns differing in used chemistries are commercially available. However, there is a lack of comparative studies assessing their performance, and thus providing guidance for the selection of an adequate stationary phase for different glycoproteomics applications. Here, we compare three HILIC columns recently developed by Advanced Chromatography Technologies (ACE)- with unfunctionalized (HILIC-A), polyhydroxy functionalized (HILIC-N), and aminopropyl functionalized (HILIC-B) silica- with a C18 reversed-phase column in the separation of human immunoglobulin G glycopeptides. HILIC-A and HILIC-B exhibit mixed-mode separation combining hydrophilic and ion-exchange interactions for analyte retention. Expectably, reversed-phase mode successfully separated clusters of immunoglobulin G1 and immunoglobulin G2 glycopeptides, which differ in amino acid sequence, but was not able to adequately separate different glycoforms of the same peptide. All ACE HILIC columns showed higher separation power for different glycoforms, and we show that each column separates a different group of glycopeptides more effectively than the others. Moreover, HILIC-A and HILIC-N columns separated the isobaric A2G1F1 glycopeptides of immunoglobulin G, and thus showed the potential for the elucidation of the structure of isomeric glycoforms. Furthermore, the possible retention mechanism for the HILIC columns is discussed on the basis of the determined chromatographic parameters.


Subject(s)
Glycopeptides/isolation & purification , Immunoglobulin G/isolation & purification , Chromatography, Ion Exchange/methods , Chromatography, Reverse-Phase/methods , Humans , Hydrophobic and Hydrophilic Interactions , Isomerism , Proteomics
4.
Cancers (Basel) ; 12(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708305

ABSTRACT

NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.

5.
Article in English | MEDLINE | ID: mdl-32485649

ABSTRACT

The composition of a sample solvent has a crucial impact on separations in hydrophilic interaction liquid chromatography (HILIC). In this short communication, we studied the effect of an organic modifier in the sample solvent on the solubility of different tryptic glycopeptides of hemopexin and haptoglobin proteins. The results showed that the solubility of glycopeptides in solvents with a high acetonitrile content depends on the type of attached N-glycan. We observed lower solubility in larger glycans attached to the same peptide backbone, and we demonstrated that glycopeptides containing sialic acids precipitate more readily than those without sialic acid. Therefore, the sample solvent composition in HILIC must be carefully optimized for accurate quantitative data collection and for adequate separation.


Subject(s)
Chromatography, High Pressure Liquid/methods , Glycopeptides/chemistry , Polysaccharides/chemistry , Acetonitriles/chemistry , Glycopeptides/analysis , Glycopeptides/isolation & purification , Hydrophobic and Hydrophilic Interactions , N-Acetylneuraminic Acid/chemistry , Solvents/chemistry
6.
Methods ; 89: 128-37, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26235815

ABSTRACT

Protein-protein interactions play a central role in the regulation of many biochemical processes (e.g. the system participating in enzyme catalysis). Therefore, a deeper understanding of protein-protein interactions may contribute to the elucidation of many biologically important mechanisms. For this purpose, it is necessary to establish the composition and stoichiometry of supramolecular complexes and to identify the crucial portions of the interacting molecules. This study is devoted to structure-functional relationships in the microsomal Mixed Function Oxidase (MFO) complex, which is responsible for biotransformation of many hydrophobic endogenous compounds and xenobiotics. In particular, the cytochrome b5 interaction with MFO terminal oxygenase cytochrome P-450 (P450) was studied. To create photolabile probes suitable for this purpose, we prepared cytochrome b5 which had a photolabile diazirine analog of methionine (pMet) incorporated into the protein sequence, employing recombinant expression in Escherichia coli. In addition to wild-type cytochrome b5, where three methionines (Met) are located at positions 96, 126, and 131, six mutants containing only one Met in the sequence were designed and expressed (see Table 1). In these mutants, a single Met was engineered into the catalytic domain (at positions 23, 41, or 46), into the linker between the protein domains (at position 96), or into the membrane region (at positions 126 or 131). These mutants should confirm or exclude these portions of cytochrome b5 which are involved in the interaction with P450. After UV irradiation, the pMet group(s) in the photolabile cytochrome b5 probe was(were) activated, producing covalent crosslinks with the interacting parts of P450 2B4 in the close vicinity. The covalent complexes were analyzed by the "bottom up" approach with high-accuracy mass spectrometry. The analysis provided an identification of the contacts in the supramolecular complex with low structural resolution. We found that all the above-mentioned cytochrome b5 Met residues can form intermolecular crosslinks and thus participate in the interaction. In addition, our results indicate the existence of at least two P450:cytochrome b5 complexes which differ in the orientation of individual proteins. The results demonstrate the advantages of the photo-initiated crosslinking technique which is able to map the protein-protein interfaces not only in the solvent exposed regions, but also in the membrane-embedded segments (compared to a typical crosslinking approach which generally only identifies crosslinks in solvent exposed regions).


Subject(s)
Aryl Hydrocarbon Hydroxylases/analysis , Cross-Linking Reagents/chemistry , Cytochromes b5/analysis , Mass Spectrometry/methods , Photic Stimulation/methods , Animals , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Cross-Linking Reagents/metabolism , Cytochrome P450 Family 2 , Cytochromes b5/chemistry , Cytochromes b5/metabolism , Protein Binding , Protein Interaction Maps/physiology , Rabbits
7.
Mol Microbiol ; 93(6): 1207-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25060824

ABSTRACT

Type IV pilins are bacterial proteins that are small in size but have a broad range of functions, including motility, transformation competence and secretion. Although pilins vary in sequence, they possess a characteristic signal peptide that has to be removed by the prepilin peptidase PilD during pilin maturation. We generated a pilD (slr1120) null mutant of the cyanobacterium Synechocystis 6803 that accumulates an unprocessed form of the major pilin PilA1 (pPilA1) and its non-glycosylated derivative (NpPilA1). Notably, the pilD strain had aberrant membrane ultrastructure and did not grow photoautotrophically because the synthesis of Photosystem II subunits was abolished. However, other membrane components such as Photosystem I and ATP synthase were synthesized at levels comparable to the control strain. Proliferation of the pilD strain was rescued by elimination of the pilA1 gene, demonstrating that PilA1 prepilin inhibited the synthesis of Photosystem II. Furthermore, NpPilA1 co-immunoprecipitated with the SecY translocase and the YidC insertase, and both of these essential translocon components were degraded in the mutant. We propose that unprocessed prepilins inactivate an identical pool of translocons that function in the synthesis of both pilins and the core subunits of Photosystem II.


Subject(s)
Bacterial Proteins/metabolism , Endopeptidases/genetics , Fimbriae Proteins/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/growth & development , Bacterial Proteins/genetics , Endopeptidases/metabolism , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Glycosylation , Mutation , Synechocystis/genetics , Synechocystis/metabolism
8.
Int J Mol Sci ; 15(6): 9224-41, 2014 May 26.
Article in English | MEDLINE | ID: mdl-24865487

ABSTRACT

Protein-protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8-Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure.


Subject(s)
14-3-3 Proteins/metabolism , Protein Interaction Mapping/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , 14-3-3 Proteins/chemistry , Amino Acid Sequence , Humans , Models, Molecular , Photochemical Processes , Protein Multimerization
9.
Neuro Endocrinol Lett ; 35 Suppl 2: 114-22, 2014.
Article in English | MEDLINE | ID: mdl-25638375

ABSTRACT

OBJECTIVES: The mammalian mixed function oxidase (MFO) system participates in hydroxylation of many hydrophobic endogenous compounds as well as xenobiotics such as drugs and carcinogens. This biotransformation system, located in a membrane of endoplasmic reticulum, consists of cytochrome P-450 (P450), NADPH:P450 oxidoreductase and a facultative component, cytochrome b5. The knowledge of the interactions among the individual components of the MFO system is essential to understand the relationships between the structure and function of this system that finally dictate a qualitative and quantitative pattern of produced metabolites (e.g. detoxified xenobiotics and/or activated carcinogens). To elucidate the quantitative aspects of the interactions within the MFO system we acquired the photo-initiated cross-linking approach. METHODS: The photo-initiated cross-linking employing cytochrome b5 as a protein nanoprobe [an amino acid analogue of methionine (pMet) was incorporated into cytochrome b5 sequence during recombinant expression] was used to quantify its interaction with P450 2B4 in a functional membrane complex. The cross-linking was initiated by UV-irradiation that formed from a pMet photolabile diazirine group highly reactive carbene biradical. This biradical is able to covalently bind amino acids in the close proximity and to form cross-link. The Met 96 of cytochrome b5 is situated in a linker region between its catalytic and membrane domains, while Met 126 and 131 are located in its membrane domain. The combination of several methods (electrophoresis in polyacrylamide gel, isoelectric focusing, Edman N-terminal degradation and amino acid analysis) was employed to characterize the molar ratio of P450 2B4 to cytochrome b5 in formed covalent cross-links to quantify their transient interactions. RESULTS: The successfully produced cytochrome b5 nanoprobe (with confirmed pMet incorporation by mass spectrometry) stimulates the catalytical activity of P450 2B4 when reconstituted with NADPH:P450 oxidoreductase in vitro in dilauroylphosphatidylcholine (DLPC) vesicles. The cross-linking was carried out in similar reconstituted system without NADPH:P450 oxidoreductase, and at least three products were separated on 1D SDS-PAGE. The molar ratio of P450 to cytochrome b5 in each complex was estimated using the above-mentioned combination of methods as 1:1, 1:2 and 2:1. CONCLUSIONS: The results demonstrate the utility of cytochrome b5 nanoprobe to study the interactions in MFO system. Using this nanoprobe, heterodimer with P450 2B4 and in addition also heterooligomers were identified, suggesting rather complex interactions of both proteins in this system that suppose the formation of such multimeric structures in the membrane of endoplasmic reticulum.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Cell Membrane/metabolism , Cytochromes b5/metabolism , Animals , Cytochrome P450 Family 2
10.
J Struct Biol ; 179(1): 10-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22580067

ABSTRACT

Hydrogen/deuterium (H/D) exchange or chemical cross-linking by soluble carbodiimide (EDC) was employed in combination with high-resolution mass spectrometry (MS) to extend our knowledge about contact surface regions involved in the well-characterized model of interaction between two molecules of human 14-3-3ζ regulatory protein. The H/D exchange experiment provided low resolution mapping of interaction in the homodimeric 14-3-3ζ complex. A lower level of deuteration, suggesting structural protection, of two sequential segments has been demonstrated for dimeric 14-3-3ζ wild type relative to the monomeric mutant 14-3-3ζ S58D. The N-terminal sequence (the first 27 residues) from one subunit interacts with region αC'and αD'-helices (residues 45-98) of the other molecule across the dimer interface. To identify interacting amino acid residues within the studied complex, a chemical cross-linking reaction was carried out to produce the covalent homodimer, which was detected by SDS-PAGE. The MS analysis (following tryptic in-gel digestion) employing both high resolution and tandem mass spectrometry revealed cross-linked amino acid residues. Two alternative salt bridges between Glu81 and either Lys9 or the N-terminal amino group have been found to participate in transient interactions of the 14-3-3ζ isotype homodimerization. The data obtained, which have never previously been reported, were used to modify the published 14-3-3 crystal structure using molecular modeling. Based on our findings, utilization of this combination of experimental approaches, which preserve protein native structures, is suitable for mapping the contact between two proteins and also allows for the description of transient interactions or of regions with flexible structure in the studied protein complexes.


Subject(s)
14-3-3 Proteins/chemistry , Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , 14-3-3 Proteins/genetics , 14-3-3 Proteins/isolation & purification , 14-3-3 Proteins/metabolism , Amino Acid Sequence , Carbodiimides/chemistry , Cross-Linking Reagents/chemistry , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Mutation , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
11.
Neuro Endocrinol Lett ; 33 Suppl 3: 41-7, 2012.
Article in English | MEDLINE | ID: mdl-23353842

ABSTRACT

OBJECTIVES: The cytochrome P450 (P450) and cytochrome b5 are membrane hemoproteins composing together with flavoprotein NADPH:P450 reductase a mixed function oxidase (MFO) system. The knowledge of the interaction between P450 and its redox partners within a MFO system is fundamental to understand P450 reaction mechanism, an electron transport from its redox partner and also detoxification of xenobiotics and/or metabolism of endogenous substrates with all positive or negative aspects for organisms. METHODS: The chemical cross-linking by soluble carbodiimide (EDC) in combination with the liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) has been employed to characterize the contact surface regions involved in the transient interaction between two catalytic domains of P450 2B4 and cytochrome b5. RESULTS: The cross-linking reaction was accomplished in an equimolar catalytic complex of P450 2B4:cytochrome b5 and the covalent hetero-dimers detected on SDS-PAGE electrophoresis were analyzed (after in gel trypsin digestion) using LC-HRMS to identify cross-linked amino-acid residues. The computed in silico models of P450 2B4:cytochrome b5 complex using amino-acids participating in cross-links (Asp134, Lys139, Glu424 and Glu439 located on a proximal surface of P450 2B4) suggest interpretation that two different types of cytochrome b5 orientations are present in the studied interaction within a MFO system: the first allowing potential cytochrome b5 electron donation to P450, the second one inducing cytochrome b5 modulation of P450 structural changes. CONCLUSIONS: The results demonstrated the capability of the used experimental approach to map the interaction between P450 and cytochrome b5 suggesting the formation of multi-meric structures within a MFO system as interpretation of the two observed mutual orientations.


Subject(s)
Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochromes b5/chemistry , Cytochromes b5/metabolism , Microsomes, Liver/enzymology , Animals , Carbodiimides/chemistry , Chromatography, Liquid/methods , Cross-Linking Reagents/chemistry , Cytochrome P450 Family 2 , Dimerization , Electrons , Mass Spectrometry/methods , Models, Chemical , Oxidation-Reduction , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Rabbits , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...