Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 37(11): 1826-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22660042

ABSTRACT

We present results on a monolithic semiconductor-based master-oscillator power amplifier (MOPA) combining a distributed-feedback (DFB) laser and a tapered amplifier on a single chip. The MOPA reaches an output power of almost 12 W at an emission wavelength around 1064 nm in continuous-wave operation. Pulses with a length of around 100 ps can be obtained either by injecting nanosecond current pulses into the tapered amplifier alone or into both the DFB laser and the tapered amplifier. In the latter case, pulses with a width of 84 ps, a peak power of 42 W, and a spectral width of 160 pm are generated.

2.
Opt Lett ; 36(3): 367-9, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21283192

ABSTRACT

We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.


Subject(s)
Lasers , Magnesium Oxide/chemistry , Niobium/chemistry , Oxides/chemistry , Spectrum Analysis
3.
Opt Lett ; 34(2): 217-9, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19148260

ABSTRACT

A microsystem excitation light source emitting at 488 nm is presented. A direct single-pass nonlinear frequency conversion using a diode laser emission at 976 nm and a periodically poled lithium niobate waveguide crystal for efficient second-harmonic generation is demonstrated. This was realized on a micro-optical bench with a combined thermal management and a footprint of (25 mm x 5 mm). At 217 mW fundamental power a generated power of 56 mW at 488 nm with a conversion efficiency of 26% was achieved. With a power stability below 1%, this wavelength stabilized compact device is well suited for Raman spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL