Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(3): e1011941, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484020

ABSTRACT

Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results.


Subject(s)
Electrodes , Quality Control
2.
Curr Opin Neurobiol ; 83: 102804, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913687

ABSTRACT

Calcium directly controls or indirectly regulates numerous functions that are critical for neuronal network activity. Intracellular calcium concentration is tightly regulated by numerous molecular mechanisms because spatial domains and temporal dynamics (not just peak amplitude) are critical for calcium control of synaptic plasticity and ion channel activation, which in turn determine neuron spiking activity. The computational models investigating calcium control are valuable because experiments achieving high spatial and temporal resolution simultaneously are technically unfeasible. Simulations of calcium nanodomains reveal that specific calcium sources can couple to specific calcium targets, providing a mechanism to determine the direction of synaptic plasticity. Cooperativity of calcium domains opposes specificity, suggesting that the dendritic branch might be the preferred computational unit of the neuron.


Subject(s)
Calcium , Neurons , Calcium/metabolism , Neurons/physiology , Neuronal Plasticity/physiology , Calcium Signaling/physiology , Synapses/physiology
3.
Genes Brain Behav ; 21(5): e12814, 2022 06.
Article in English | MEDLINE | ID: mdl-35621219

ABSTRACT

Translational value of mouse models of neuropsychiatric disorders depends heavily on the accuracy with which they replicate symptoms observed in the human population. In mouse models of autism spectrum disorder (ASD) these include, among others, social affiliation, and communication deficits as well as impairments in understanding and perception of others. Most studies addressing these issues in the BTBR T+ Itpr3tf/J mouse, an idiopathic model of ASD, were based on short dyadic interactions of often non-familiar partners placed in a novel environment. In such stressful and variable conditions, the reproducibility of the phenotype was low. Here, we compared physical conditions and the degree of habituation of mice at the time of testing in the three chambered social affiliation task, as well as parameters used to measure social deficits and found that both the level of stress and human bias profoundly affect the results of the test. To minimize these effects, we tested social preference and network dynamics in mice group-housed in the Eco-HAB system. This automated recording allowed for long-lasting monitoring of differences in social repertoire (including interest in social stimuli) in BTBR T+ Itpr3tf/J and normosocial c57BL/6J mice. With these observations we further validate the BTBR T+ Itpr3tf/J mouse as a model for ASD, but at the same time emphasize the need for more ecological testing of social behavior within all constructs of the Systems for Social Processes domain (as defined by the Research Domain Criteria framework).


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Reproducibility of Results , Social Behavior
4.
Proc Biol Sci ; 289(1972): 20212747, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35414242

ABSTRACT

The enlarged brains of homeotherms bring behavioural advantages, but also incur high energy expenditures. The 'expensive brain' (EB) hypothesis posits that the energetic costs of the enlarged brain and the resulting increased cognitive abilities (CA) were met by either increased energy turnover or reduced allocation to other expensive organs, such as the gut. We tested the EB hypothesis by analysing correlated responses to selection in an experimental evolution model system, which comprises line types of laboratory mice selected for high or low basal metabolic rate (BMR), maximum (VO2max) metabolic rates and random-bred (unselected) lines. The traits are implicated in the evolution of homeothermy, having been pre-requisites for the encephalization and exceptional CA of mammals, including humans. High-BMR mice had bigger guts, but not brains, than mice of other line types. Yet, they were superior in the cognitive tasks carried out in both reward and avoidance learning contexts and had higher neuronal plasticity (indexed as the long-term potentiation) than their counterparts. Our data indicate that the evolutionary increase of CA in mammals was initially associated with increased BMR and brain plasticity. It was also fuelled by an enlarged gut, which was not traded off for brain size.


Subject(s)
Basal Metabolism , Energy Metabolism , Animals , Basal Metabolism/physiology , Biological Evolution , Body Temperature Regulation , Brain/metabolism , Cognition , Mammals , Mice , Organ Size/physiology
5.
Elife ; 102021 08 10.
Article in English | MEDLINE | ID: mdl-34374340

ABSTRACT

Long-lasting long-term potentiation (L-LTP) is a cellular mechanism of learning and memory storage. Studies have demonstrated a requirement for extracellular signal-regulated kinase (ERK) activation in L-LTP produced by a diversity of temporal stimulation patterns. Multiple signaling pathways converge to activate ERK, with different pathways being required for different stimulation patterns. To answer whether and how different temporal patterns select different signaling pathways for ERK activation, we developed a computational model of five signaling pathways (including two novel pathways) leading to ERK activation during L-LTP induction. We show that calcium and cAMP work synergistically to activate ERK and that stimuli given with large intertrial intervals activate more ERK than shorter intervals. Furthermore, these pathways contribute to different dynamics of ERK activation. These results suggest that signaling pathways with different temporal sensitivities facilitate ERK activation to diversity of temporal patterns.


Subject(s)
Long-Term Potentiation/physiology , MAP Kinase Signaling System , Computational Biology , Time Factors
6.
PLoS Comput Biol ; 17(5): e1008615, 2021 05.
Article in English | MEDLINE | ID: mdl-33989280

ABSTRACT

Extracellular recording is an accessible technique used in animals and humans to study the brain physiology and pathology. As the number of recording channels and their density grows it is natural to ask how much improvement the additional channels bring in and how we can optimally use the new capabilities for monitoring the brain. Here we show that for any given distribution of electrodes we can establish exactly what information about current sources in the brain can be recovered and what information is strictly unobservable. We demonstrate this in the general setting of previously proposed kernel Current Source Density method and illustrate it with simplified examples as well as using evoked potentials from the barrel cortex obtained with a Neuropixels probe and with compatible model data. We show that with conceptual separation of the estimation space from experimental setup one can recover sources not accessible to standard methods.


Subject(s)
Brain/physiology , Models, Neurological , Animals , Computational Biology , Computer Simulation , Electrodes , Evoked Potentials/physiology , Extracellular Space/physiology , Humans , Male , Rats , Rats, Wistar , Somatosensory Cortex/physiology , Vibrissae/innervation , Vibrissae/physiology
7.
Semin Cell Dev Biol ; 95: 120-129, 2019 11.
Article in English | MEDLINE | ID: mdl-30634048

ABSTRACT

Synaptic plasticity, the activity dependent change in synaptic strength, forms the molecular foundation of learning and memory. Synaptic plasticity includes structural changes, with spines changing their size to accomodate insertion and removal of postynaptic receptors, which are correlated with functional changes. Of particular relevance for memory storage are the long lasting forms of synaptic plasticity which are protein synthesis dependent. Due to the importance of spine structural plasticity and protein synthesis, this review focuses on the signaling pathways that connect synaptic stimulation with regulation of protein synthesis and remodeling of the actin cytoskeleton. We also review computational models that implement novel aspects of molecular signaling in synaptic plasticity, such as the role of neuromodulators and spatial microdomains, as well as highlight the need for computational models that connect activation of memory kinases with spine actin dynamics.


Subject(s)
Actin Cytoskeleton/metabolism , Neuronal Plasticity/physiology , Protein Biosynthesis , Receptors, Cell Surface/metabolism , Animals , Humans , Models, Biological , Signal Transduction
8.
Elife ; 72018 10 25.
Article in English | MEDLINE | ID: mdl-30355449

ABSTRACT

Synaptic plasticity, which underlies learning and memory, depends on calcium elevation in neurons, but the precise relationship between calcium and spatiotemporal patterns of synaptic inputs is unclear. Here, we develop a biologically realistic computational model of striatal spiny projection neurons with sophisticated calcium dynamics, based on data from rodents of both sexes, to investigate how spatiotemporally clustered and distributed excitatory and inhibitory inputs affect spine calcium. We demonstrate that coordinated excitatory synaptic inputs evoke enhanced calcium elevation specific to stimulated spines, with lower but physiologically relevant calcium elevation in nearby non-stimulated spines. Results further show a novel and important function of inhibition-to enhance the difference in calcium between stimulated and non-stimulated spines. These findings suggest that spine calcium dynamics encode synaptic input patterns and may serve as a signal for both stimulus-specific potentiation and heterosynaptic depression, maintaining balanced activity in a dendritic branch while inducing pattern-specific plasticity.


Subject(s)
Calcium/metabolism , Models, Neurological , Neural Inhibition/physiology , Synapses/metabolism , Action Potentials , Computer Simulation , Dendritic Spines/metabolism , Excitatory Postsynaptic Potentials , Ion Channels/metabolism , Neurons/metabolism
9.
Front Comput Neurosci ; 12: 49, 2018.
Article in English | MEDLINE | ID: mdl-30018546

ABSTRACT

In spike-timing dependent plasticity (STDP) change in synaptic strength depends on the timing of pre- vs. postsynaptic spiking activity. Since STDP is in compliance with Hebb's postulate, it is considered one of the major mechanisms of memory storage and recall. STDP comprises a system of two coincidence detectors with N-methyl-D-aspartate receptor (NMDAR) activation often posited as one of the main components. Numerous studies have unveiled a third component of this coincidence detection system, namely neuromodulation and glia activity shaping STDP. Even though dopaminergic control of STDP has most often been reported, acetylcholine, noradrenaline, nitric oxide (NO), brain-derived neurotrophic factor (BDNF) or gamma-aminobutyric acid (GABA) also has been shown to effectively modulate STDP. Furthermore, it has been demonstrated that astrocytes, via the release or uptake of glutamate, gate STDP expression. At the most fundamental level, the timing properties of STDP are expected to depend on the spatiotemporal dynamics of the underlying signaling pathways. However in most cases, due to technical limitations experiments grant only indirect access to these pathways. Computational models carefully constrained by experiments, allow for a better qualitative understanding of the molecular basis of STDP and its regulation by neuromodulators. Recently, computational models of calcium dynamics and signaling pathway molecules have started to explore STDP emergence in ex and in vivo-like conditions. These models are expected to reproduce better at least part of the complex modulation of STDP as an emergent property of the underlying molecular pathways. Elucidation of the mechanisms underlying STDP modulation and its consequences on network dynamics is of critical importance and will allow better understanding of the major mechanisms of memory storage and recall both in health and disease.

10.
Eur J Neurosci ; 45(8): 1044-1056, 2017 04.
Article in English | MEDLINE | ID: mdl-27233469

ABSTRACT

The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity.


Subject(s)
Calcium/metabolism , Corpus Striatum/physiology , Models, Neurological , Neuronal Plasticity/physiology , Neurons/physiology , Animals , Calcium Channels, L-Type/metabolism , Computer Simulation , Corpus Striatum/drug effects , Diffusion , Female , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Inhibition/physiology , Neural Pathways/cytology , Neural Pathways/drug effects , Neural Pathways/physiology , Neuronal Plasticity/drug effects , Neurons/cytology , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Receptors, AMPA/metabolism , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Time Factors
11.
Article in English | MEDLINE | ID: mdl-24019266

ABSTRACT

Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, although the mapping between spatiotemporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of extracellular signal-related kinase (ERK) activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases that produce long-lasting synaptic plasticity. Although the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial models remain more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity.


Subject(s)
Computer Simulation , Models, Neurological , Neuronal Plasticity/physiology , Software , Synaptic Transmission/physiology , Systems Biology/methods , Animals , Humans , MAP Kinase Signaling System/physiology
12.
J Theor Biol ; 266(3): 380-90, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20600141

ABSTRACT

In this article we discuss the short-term synaptic depression using a mathematical model. We derive the model of synaptic depression caused by the depletion of synaptic vesicles for the case of infinitely short stimulation time and show that the analytical formulas for the postsynaptic potential (PSP) and kinetic functions take simple closed form. A solution in this form allows an analysis of the characteristics of depression as a function of the models parameters and the derivation of analytic formulas for measures of short time synaptic depression commonly used in experimental studies. Those formulas are used to validate the model by fitting it to two types of synapses described in the literature. Given the fitted parameters we discuss the behavior of the synapse in situations involving frequency change. We also indicate a possible role of depressing synapses in information processing as not only a filter of high frequency input but as a detector of the return from high frequency stimulation to the stimulation within frequency band specific for a given synapse.


Subject(s)
Algorithms , Excitatory Postsynaptic Potentials/physiology , Models, Neurological , Synapses/physiology , Action Potentials/physiology , Animals , Cats , Humans , Male , Neurons/physiology , Rats , Somatosensory Cortex/physiology , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...