Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Cent Eur J Immunol ; 49(1): 52-59, 2024.
Article in English | MEDLINE | ID: mdl-38812604

ABSTRACT

Fever is an adaptive host-defense response to infection and nowadays is rightly considered to be an expression of a healthy body and a well-functioning immune system. The condition is that it must be tightly regulated. Therefore, in individual cases, fever may be detrimental and should be treated. Specific excessive febrile reaction to pathogens which occurs after aseptic injuries is one among such cases. We previously found that among necrotic products, high mobility group box protein 1 (HMGB1) released from the site of aseptic injury affects immune effectors (cells) to mediate higher fever in response to further contact with bacterial lipopolysaccharide (LPS). Here we observed that intraperitoneal (i.p.) pre-injection of recombinant HMGB1 (5 µg/rat i.p.) provoked an increase in plasma levels of prostaglandin E2 (PGE2) in rats and augmented release of interleukin (IL)-1ß and IL-6 after LPS administration at a dose of 50 µg/kg i.p. compared to rats pre-injected with saline or heat-denatured HMGB1. Furthermore, peripheral blood mononuclear cells (PBMCs) isolated from rats injected with HMGB1 were more sensitized to produce enhanced levels of IL-1ß and PGE2 when stimulated with LPS in vitro (1 µg/ml/106 cells for 4 h) compared to control animals injected with saline or heat-denatured HMGB1. We also noted a significant increase in activation of nuclear factor κB (NF-κB) in cells isolated from rats injected with HMGB1. Altogether, the obtained results suggest that HMGB1 participates in priming of immune cells to further contact with pathogens.

2.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675556

ABSTRACT

Research on titanium-oxo complexes (TOCs) is usually focused on their structure and photocatalytic properties. Findings from these investigations further sparked our interest in exploring their potential biological activities. In this study, we focused on the synthesis and structure of a compound with the general formula [Ti8O2(OiPr)20(man)4] (1), which was isolated from the reaction mixture of titanium(IV) isopropoxide with mandelic acid (Hman) in a molar ratio of 4:1. The structure (1) was determined using single-crystal X-ray diffraction, while spectroscopic studies provided insights into its physicochemical properties. To assess the potential practical applications of (1), its microcrystals were incorporated into a polymethyl methacrylate (PMMA) matrix, yielding composite materials of the type PMMA + (1) (2 wt.%, 5 wt.%, 10 wt.%, and 20 wt.%). The next stage of our research involved the evaluation of the antimicrobial activity of the obtained materials. The investigations performed demonstrated the antimicrobial activity of pure (1) and its composites (PMMA + (1)) against both Gram-positive and Gram-negative strains. Furthermore, MTT tests conducted on the L929 murine fibroblast cell line confirmed the lack of cytotoxicity of these composites. Our study identified (1) as a promising antimicrobial agent, which is also may be use for producing composite coatings.


Subject(s)
Titanium , Titanium/chemistry , Titanium/pharmacology , Mice , Animals , Ligands , Mandelic Acids/chemistry , Mandelic Acids/pharmacology , Microbial Sensitivity Tests , Cell Line , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Molecular Structure , Fibroblasts/drug effects , Crystallography, X-Ray
3.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139402

ABSTRACT

Fever-range hyperthermia (FRH) is utilized in chronic disease treatment and serves as a model for fever's thermal component investigation. Macrophages, highly susceptible to heat, play a pivotal role in various functions determined by their polarization state. However, it is not well recognized whether this process can be modulated by FRH. To address this, we used two different macrophage cell lines that were treated with FRH. Next, to define macrophage phenotype, we examined their functional surface markers CD80 and CD163, intracellular markers such as inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), and the expression of interleukin-10 (IL-10) and tumor necrosis factor α (TNF-α). Additionally, in FRH-treated cells, we analyzed an expression of Toll-like receptor 4 (TLR-4) and its role in macrophage polarization. We also checked whether FRH can switch the polarization of macrophages in pro-inflammatory condition triggered by lipopolysaccharide (LPS). FRH induced M2-like polarization, evident in increased CD163, IL-10, and Arg-1 expression. Notably, elevated COX-2, TNF-α, and TLR-4 indicated potential pro-inflammatory properties, suggesting polarization towards the M2b phenotype. Additionally, FRH shifted lipopolysaccharide (LPS)-induced M1 polarization to an M2-like phenotype, reducing antimicrobial molecules (ROS and NO). In summary, FRH emerged as a modulator favoring M2-like macrophage polarization, even under pro-inflammatory conditions, showcasing its potential therapeutic relevance.


Subject(s)
Hyperthermia, Induced , Interleukin-10 , Humans , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Macrophages/metabolism , Phenotype
4.
Cancers (Basel) ; 15(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894480

ABSTRACT

Endotoxin tolerance (ET) is an adaptive phenomenon of the immune system that protects the host from clinical complications due to repeated exposure of the body to endotoxins such as lipopolysaccharide (LPS). Since ET is an immunosuppressive mechanism in which a significant reprogramming of macrophages is observed, we hypothesized that it could influence cancer development by modifying the tumour environment. This study aimed to explore whether ET influences cancer progression by altering the tumour microenvironment. Endotoxin-tolerant macrophages (MoET) were examined for their impact on breast and colon cancer cells via direct interaction and conditioned media exposure. We characterized cancer cell behaviour by viability, clonogenic potential, motility, scratch assays, and 3D spheroidal assays. MoET-derived factors increased cancer cell viability, motility, and clonogenicity, suggesting a conducive environment for cancer development. Remarkably, despite reduced TNFα and IL-6 levels, MoET exhibited M1 polarization. These findings uncover an ET-associated macrophage reprogramming that fosters a favourable context for cancer progression across diverse tumours. Targeting ET could emerge as a promising avenue for cancer therapy and prevention.

5.
Int J Hyperthermia ; 40(1): 2216899, 2023.
Article in English | MEDLINE | ID: mdl-37279921

ABSTRACT

OBJECTIVE: Fever is defined as a rise in body temperature upon disease. Fever-range hyperthermia (FRH) is a simplified model of fever and a well-established medical procedure. Despite its beneficial effects, the molecular changes induced by FRH remain poorly characterized. The aim of this study was to investigate the influence of FRH on regulatory molecules such as cytokines and miRNAs involved in inflammatory processes. METHODS: We developed a novel, fast rat model of infrared-induced FRH. The body temperature of animals was monitored using biotelemetry. FRH was induced by the infrared lamp and heating pad. White blood cell counts were monitored using Auto Hematology Analyzer. In peripheral blood mononuclear cells, spleen and liver expression of immune-related genes (IL-10, MIF and G-CSF, IFN-γ) and miRNA machinery (DICER1, TARBP2) was analyzed with RT-qPCR. Furthermore, RT-qPCR was used to explore miRNA-155 levels in the plasma of rats. RESULTS: We observed a decrease in the total number of leukocytes due to lower number of lymphocytes, and an increase in the number of granulocytes. Furthermore, we observed elevated expressions of DICER1, TARBP2 and granulocyte colony-stimulating factor (G-CSF) in the spleen, liver and PBMCs immediately following FRH. FRH treatment also had anti-inflammatory effects, evidenced by the downregulation of pro-inflammatory macrophage migration inhibitor factor (MIF) and miR-155, and the increased expression of anti-inflammatory IL-10. CONCLUSION: FRH affects the expression of molecules involved in inflammatory processes leading to alleviated inflammation. We suppose these effects may be miRNAs-dependent and FRH can be involved in therapies where anti-inflammatory action is needed.


Subject(s)
Hyperthermia, Induced , MicroRNAs , Rats , Animals , Rats, Wistar , Interleukin-10 , MicroRNAs/genetics , Leukocytes, Mononuclear , Cytokines , Granulocyte Colony-Stimulating Factor
6.
J Funct Biomater ; 14(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37367257

ABSTRACT

Biodegradable metal systems are the future of modern implantology. This publication describes the preparation of porous iron-based materials using a simple, affordable replica method on a polymeric template. We obtained two iron-based materials with different pore sizes for potential application in cardiac surgery implants. The materials were compared in terms of their corrosion rate (using immersion and electrochemical methods) and their cytotoxic activity (indirect test on three cell lines: mouse L929 fibroblasts, human aortic smooth muscle cells (HAMSC), and human umbilical vein endothelial cells (HUVEC)). Our research proved that the material being too porous might have a toxic effect on cell lines due to rapid corrosion.

7.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902290

ABSTRACT

Coriolus versicolor (CV) is a common species from the Polyporaceae family that has been used in traditional Chinese herbal medicine for over 2000 years. Among well-described and most active compounds identified in CV are polysaccharopeptides, such as polysaccharide peptide (PSP) and Polysaccharide-K (PSK, krestin), which, in some countries, are already used as an adjuvant agent in cancer therapy. In this paper, research advances in the field of anti-cancer and anti-viral action of CV are analyzed. The results of data obtained in in vitro and in vivo studies using animal models as well as in clinical research trials have been discussed. The present update provides a brief overview regarding the immunomodulatory effects of CV. A particular focus has been given to the mechanisms of direct effects of CV on cancer cells and angiogenesis. A potential use of CV compounds in anti-viral treatment, including therapy against COVID-19 disease, has also been analyzed based on the most recent literature. Additionally, the significance of fever in viral infection and cancer has been debated, providing evidence that CV affects this phenomenon.


Subject(s)
Agaricales , COVID-19 , Neoplasms , Polyporaceae , Animals , Global Health
8.
J Funct Biomater ; 13(4)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36547531

ABSTRACT

Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.

9.
J Inflamm Res ; 15: 3599-3611, 2022.
Article in English | MEDLINE | ID: mdl-35757459

ABSTRACT

Purpose: Extract from the fungus Coriolus versicolor (CV) is classified as an immunological response modifier. Previously, we have shown that this extract induces interleukin 6 (IL-6)-related extension of lipopolysaccharide (LPS)-induced fever. This study investigated the effect of CV extract on the production of pro-inflammatory cytokines and the expression of components of signal transduction pathways leading to the secretion of cytokines from RAW 264.7 macrophages stimulated with different doses of LPS. Methods: RAW 264.7 cells were stimulated with CV extract alone or co-treated with CV extract and LPS. The level of IL-6 and tumour necrosis factor α (TNF-α) in the culture media was measured using ELISA. Protein expression of Toll-like receptor (TLR) 4, phosphorylated IκB (p-IκB), CD14 glycoprotein and phospho-phosphatidylinositol 3-kinase (p-PI3K) was evaluated using Western blot. The effects of TLR4, nuclear factor κB (NF-κB) and p-PI3K on cytokine secretion were estimated using inhibitors: TAK-242, JSH-23 and LY294002. Results: CV extract itself stimulates the secretion of IL-6 and TNF-α and increases the expression of TLR4, p-IκB and p-PI3K. The presence of CV extract during the treatment of cells with lower concentrations of LPS (10 and 100 ng/mL) increases the cytokine production. Co-stimulation of cells with CV extract and LPS at a higher dose (500 ng/mL) decreases the secretion of cytokines. This effect is related to the changes in the expression of TLR4, CD14 glycoprotein, p-IκB and p-PI3K. Conclusion: This is the first report showing that the CV extract-induced production of cytokines is mediated by the PI3K signalling pathway. This extract acts antagonistically or additively with LPS on the production of IL-6 and TNF-α, depending on the LPS concentration. Our results are helpful for illustrating the mechanisms for the immunostimulatory effect of CV extract in inflammatory processes.

10.
Dalton Trans ; 51(22): 8804-8820, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35616922

ABSTRACT

Three sawhorse-type ruthenium(I) complexes containing purine analogs such as triazolopyrimidines of the general formula [Ru2(CO)4(µ-OOCCH3)2(L)2], where L is 1,2,4-triazolo[1,5-a]pyrimidine (tp for 1), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for 2) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for 3), have been synthesized and characterized by elemental analysis, infrared analysis, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N), and single-crystal X-ray diffraction (for 1 and 2). By assay with myoglobin, the photo-activated CO-releasing molecule (PhotoCORM) character of (1-3) has been confirmed, thus indicating the possibility of use in CO-based therapies. The importance of UV-induced modification has been investigated in the context of anticancer properties. Complexes (1) and (2) have been thoroughly screened for their in vitro cytotoxicity against various cancer cell lines: MCF-7 (breast cancer), HeLa (cervical cancer) and C32 (melanoma), as well as L929 normal fibroblasts in the dark and presence of UV-A light (365 nm). The results were compared with those for cisplatin and two reference ruthenium complexes, namely NAMI-A and KP1019. The most hydrophilic [Ru2(CO)4(µ-OOCCH3)2(tp)2] (1) (log P = -1.12) was found to be more cytotoxic than (2), despite the lower cellular uptake measured by ICP-MS toward HeLa cells. Importantly, photo-induced stimulation of cells with (1) resulted in a lower decrease in the viability of L929 normal cells (IC50 = 154.7 ± 6.5 µM) in comparison with HeLa cancer cells (IC50 = 66.7 ± 3.4 µM). The photo-induced stimulation of (1) and (2) increases ROS generation, and their anticancer activity may be a partially ROS-dependent phenomenon.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , HeLa Cells , Humans , Ligands , Pyrimidines/chemistry , Pyrimidines/pharmacology , Reactive Oxygen Species , Ruthenium/chemistry , Ruthenium/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
11.
Materials (Basel) ; 16(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36614635

ABSTRACT

In our research, we have focused on the biological studies on composite materials produced by the dispersion of titanium(IV)-oxo complex (TOC) with acetylsalicylate ligands in a poly(ε-caprolactone) (PCL) matrix, which is a biodegradable thermoplastic polymer increasingly used in the production of medical devices. Using PCL as a matrix for the biologically active compounds, such as antimicrobial agents, antibiotics or other active medical substances, from which these individuals can be gradually released is fully understable. Composites of PCL + nTOC (n = 10, 15 and 20 wt.%) have been produced and, in such a form, the biological properties of TOCs have been estimated. Direct and indirect cytotoxicity studies have been performed in vitro on L929 and human umbilical vein endothelial cells (HUVEC) cell lines. The antibacterial and antifungal activity of the PCL + TOC samples have been assessed against two Staphylococcus aureus (ATCC 6538 and ATCC 25923) reference strains, two Escherichia coli (ATCC 8739 and ATCC 25922) reference strains and yeast of Candida albicans ATCC 10231. Obtained results have been correlated with electron paramagnetic resonance (EPR) spectroscopy data. We could conclude that photoexcitation by visible light of the surface of PCL + nTOC composite foils lead to the formation of different paramagnetic species, mainly O-, which slowly disappears over time; however, their destructive effect on bacteria and cells has been proven.

12.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201348

ABSTRACT

Heat utility as a critical component of fever is often ignored, although the symptom is observed in many medical conditions. Mistletoe extract (ME) is an adjunctive medication prescribed to cancer patients. The increase in body temperature is frequently observed in patients following ME administration. Nevertheless, the impact of this fever on the effectiveness of therapy is unknown. Therefore, we aimed to investigate the effect of fever-range temperatures on ME-treated breast cancer cells and macrophages. The cells were simultaneously stimulated with ME and subjected to fever-range hyperthermia (FRH; 39 °C or 41 °C). After co-treatment, the cell viability, generation of reactive oxygen species (ROS), cell cycle distribution, and production of pro-inflammatory factors (interleukin (IL)-1ß, IL-6, and cyclooxygenase (COX)-2) were evaluated. The results showed that the exposure of ME-treated breast cancer cells to FRH at 39 °C resulted in a slight decrease in their viability, whereas FRH of 41 °C enhanced this effect. Only FRH of 41 °C induced minor changes in ROS level in ME-treated breast cancer cell lines. In ME-treated macrophages, FRH stimulated cell proliferation. The cell cycle distribution analysis showed a difference between cells cultured at 39 °C and 41 °C in all examined cell lines. Moreover, hyperthermia at 41 °C completely inhibited the ME-induced increase in IL-1ß and IL-6 expression in MCF-7 breast cancer cells, whereas this effect was not observed in 4T1 breast cancer cells. In contrast, in ME-treated macrophages, FRH of 41 °C strongly up-regulated expression of the pro-inflammatory factors. We conclude that fever is an important component of ME therapy that differentially affects cancer and immune cells.

13.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072104

ABSTRACT

Melanoma, the malignancy originating from pigment-producing melanocytes, is the most aggressive form of skin cancer and has a poor prognosis once the disease starts to metastasize. The process of melanin synthesis generates an immunosuppressive and mutagenic environment, and can increase melanoma cell resistance to different treatment modalities, including chemo-, radio- or photodynamic therapy. Recently, we have shown that the presence of melanin pigment inhibits the melanoma cell response to bioactive components of Coriolus versicolor (CV) Chinese fungus. Herein, using the same human melanoma cell line in which the level of pigmentation can be controlled by the L-tyrosine concentration in culture medium, we tested the effect of suppression of melanogenesis on the melanoma cell response to CV extract and investigated the cell death pathway induced by fungus extract in sensitized melanoma cells. Our data showed that susceptibility to CV-induced melanoma cell death is significantly increased after cell depigmentation. To the best of our knowledge, we are the first to demonstrate that CV extract can induce RIPK1/RIPK3/MLKL-mediated necroptosis in depigmented melanoma cells. Moreover, using the co-culture system, we showed that inhibition of the tyrosinase activity in melanoma cells modulates cytokine expression in co-cultured mononuclear cells, indicating that depigmentation of melanoma cells may activate immune cells and thereby influence a host anticancer response.


Subject(s)
Leukocytes, Mononuclear/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Plant Extracts/pharmacology , Polyporaceae/chemistry , Signal Transduction/drug effects , Skin Pigmentation , Biomarkers , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Melanins/biosynthesis , Melanocytes/pathology , Melanoma/pathology , Necroptosis/drug effects , Reactive Oxygen Species/metabolism
14.
Front Microbiol ; 12: 632505, 2021.
Article in English | MEDLINE | ID: mdl-33967977

ABSTRACT

The increasing number of multi-drug-resistant bacteria and cancer cases, that are a real threat to humankind, forces research world to develop new weapons to deal with it. Biogenic silver nanoparticles (AgNPs) are considered as a solution to this problem. Biosynthesis of AgNPs is regarded as a green, eco-friendly, low-priced process that provides small and biocompatible nanostructures with antimicrobial and anticancer activities and potential application in medicine. The biocompatibility of these nanoparticles is related to the coating with biomolecules of natural origin. The synthesis of AgNPs from actinobacterial strain was confirmed using UV-Vis spectroscopy while their morphology, crystalline structure, stability, and coating were characterized using, transmission electron microscopy (TEM), X-ray diffraction (XRD), Zeta potential and Fourier transform infrared spectroscopy (FTIR). Antibacterial activity of biogenic AgNPs was evaluated by determination of minimum inhibitory and minimum biocidal concentrations (MIC and MBC) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. The potential mechanism of antibacterial action of AgNPs was determined by measurement of ATP level. Since the use of AgNPs in biomedical applications depend on their safety, the in vitro cytotoxicity of biosynthesized AgNPs on MCF-7 human breast cancer cell line and murine macrophage cell line RAW 264.7 using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, cell lactate dehydrogenase (LDH) release and measurement of reactive oxygen species (ROS) level were assessed. The nanoparticle protein capping agent that can be involved in reduction of silver ions to AgNPs and their stabilization was identified using LC-MS/MS. Nanoparticles were spherical in shape, small in size (mean 13.2 nm), showed crystalline nature, good stability (-18.7 mV) and presence of capping agents. They exhibited antibacterial activity (MIC of 8-128 µg ml-1, MBC of 64-256 µg ml-1) and significantly decreased ATP levels in bacterial cells after treatment with different concentrations of AgNPs. The in vitro analysis showed that the AgNPs demonstrated dose-dependent cytotoxicity against RAW 264.7 macrophages and MCF-7 breast cancer cells but higher against the latter than the former. Cell viability decrease was found to be 42.2-14.2 and 38.0-15.5% while LDH leakage 14.6-42.7% and 19.0-45.0%, respectively. IC50 values calculated for MTT assay was found to be 16.3 and 12.0 µg ml-1 and for LDH assay 102.3 and 76.2 µg ml-1, respectively. Moreover, MCF-7 cells released a greater amount of ROS than RAW 264.7 macrophages during stimulation with all tested concentrations of AgNPs (1.47-3.13 and 1.02-2.58 fold increase, respectively). The SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) analysis revealed the presence of five protein bands at a molecular weight between 31.7 and 280.9 kDa. These proteins showed the highest homology to hypothetical proteins and porins from E. coli, Delftia sp. and Pseudomonas rhodesiae. Based on obtained results it can be concluded that biogenic AgNPs were capped with proteins and demonstrated potential as antimicrobial and anticancer agent.

15.
Dalton Trans ; 50(16): 5557-5573, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33908935

ABSTRACT

Three half-sandwich organometallic ruthenium(ii) complexes containing purine analogs such as triazolopyrimidines of general formula [(η6-p-cym)Ru(L)Cl2], where p-cym represents p-cymene and L is 5,6,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidine (tmtp for 1), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for 2) and 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO for 3), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N), and single-crystal X-ray diffraction (for 1 and 2). All these complexes have been thoroughly screened for their in vitro cytotoxicity against MCF-7 and HeLa cell lines as well as L929 murine fibroblast cells, indicating [(η6-p-cym)Ru(HmtpO)Cl2] (3) as the most active representative against the HeLa cell line and simultaneously being 64-fold less toxic to normal L929 murine fibroblast cells than cisplatin. At the same time, 3 has shown antimetastatic activity comparable to NAMI-A against HeLa cells both after 24 and 48 h of treatment in a wound healing assay. In order to better understand the mechanism of anticancer action and differences in the cytotoxic activity of 1-3, the studies were expanded to determining their lipophilicity, the kinetic stability at pH 6.5-8, the effect on reactive oxygen species (ROS) production in HeLa cells and interactions with significant biomolecules (DNA and albumin) by using molecular docking and circular dichroism (CD) experiments. Furthermore, antiparasitic studies against L. braziliensis, L. infantum and T. cruzi reveal that the newly synthesized complexes 1-3 are very promising candidates which can compete with commercial antiparasitic drugs. Complex 3 in particular, on top of exhibiting a high antiparasitic effect (IC50 < 1 µM against two strains), reaches a selectivity index >1000.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Ruthenium/chemistry , HeLa Cells , Humans , Molecular Docking Simulation
16.
Materials (Basel) ; 14(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567667

ABSTRACT

The surface modification of titanium substrates and its alloys in order to improve their osseointegration properties is one of widely studied issues related to the design and production of modern orthopedic and dental implants. In this paper, we discuss the results concerning Ti6Al4V substrate surface modification by (a) alkaline treatment with a 7 M NaOH solution, and (b) production of a porous coating (anodic oxidation with the use of potential U = 5 V) and then treating its surface in the abovementioned alkaline solution. We compared the apatite-forming ability of unmodified and surface-modified titanium alloy in simulated body fluid (SBF) for 1-4 weeks. Analysis of the X-ray diffraction patterns of synthesized coatings allowed their structure characterization before and after immersing in SBF. The obtained nanolayers were studied using Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and scanning electron microscopy (SEM) images. Elemental analysis was carried out using X-ray energy dispersion spectroscopy (SEM EDX). Wettability and biointegration activity (on the basis of the degree of integration of MG-63 osteoblast-like cells, L929 fibroblasts, and adipose-derived mesenchymal stem cells cultured in vitro on the sample surface) were also evaluated. The obtained results proved that the surfaces of Ti6Al4V and Ti6Al4V covered by TiO2 nanoporous coatings, which were modified by titanate layers, promote apatite formation in the environment of body fluids and possess optimal biointegration properties for fibroblasts and osteoblasts.

17.
Int J Mol Sci ; 21(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260615

ABSTRACT

Chronic inflammation is a well-recognised tumour-enabling component, which includes bioactive molecules from cells infiltrating the tumour microenvironment and increases the risk of cancer progression. Since long-term use of the currently available anti-inflammatory drugs used in cancer therapy causes numerous side effects, the aim of this study was to investigate the effect of an extract isolated from the Coriolus versicolor fungus (CV extract) on HUVEC endothelial cells and MCF-7 breast cancer cells in a pro-inflammatory microenvironment mimicked by lipopolysaccharide (LPS). The cells were simultaneously stimulated with the LPS and CV extract. After co-treatment, the cell viability, generation of reactive oxygen species (ROS), wound-healing assay, production of the pro-inflammatory and pro-angiogenic factors (interleukin (IL) 6, IL-8, and metalloproteinase (MMP) 9)), as well as expression of Toll-like receptor (TLR) 4 and phosphorylated IκB (p-IκB) were evaluated. The results showed that the CV extract inhibited IL-6, IL-8, and MMP-9 production by the LPS-stimulated cells. This effect was accompanied by a decrease in TLR4 and p-IκB expression. The CV extract also had anti-migratory properties and induced a cytotoxic effect on the cells that was enhanced in the presence of LPS. The observed cytotoxicity was associated with an increase in ROS generation. We conclude that the CV extract possesses cytotoxic activity against cancer cells and endothelial cells and has the ability to inhibit the expression of the pro-tumorigenic factors associated with inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Breast Neoplasms/pathology , Human Umbilical Vein Endothelial Cells/pathology , Polyporaceae/chemistry , Cell Death/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , I-kappa B Proteins/metabolism , Inhibitory Concentration 50 , Interleukin-6/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/pharmacology , MCF-7 Cells , Matrix Metalloproteinase 9/metabolism , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism
18.
J Appl Genet ; 61(4): 503-511, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32812165

ABSTRACT

Lr46/Yr29/Pm39 (Lr46) is a gene for slow rusting resistance in wheat. The aim of the study was to analyze the miRNA expression in selected common wheat cultivars carrying resistance genes, Lr46 among others (HN Rod, Pavon'S', Myna'S', Frontana'S', and Sparrow'S') in response to leaf rust infection caused by Puccinia triticina Erikss. In the Pavon 'S', Myna 'S', Frontana'S', and Sparow'S' varieties a product with a length of 242 bp has been identified, which is specific to the Xwmc44 marker linked to the brown rust resistance gene Lr46. In the next step, the differences in the expression of microRNA (miR5085 and miR164) associated with the Lr46 gene, which is responsible for different resistance of selected wheat cultivars to leaf rust, were examined using emulsion PCR (ddPCR). In the experiment, biotic stress was induced in mature plants by infecting them with fungal spores under controlled conditions in a growth chamber. For analysis the plant material was collected before inoculation and 6, 12, 24, and 48 h after inoculation. The experiments also showed that plant infection with Puccinia triticina resulted in an increase in miR164 expression in cultivars carrying the Lr46 gene. The expression of miR164 remained stable in a control cultivar (HN ROD) lacking this gene. This has proved that miR164 can be involved in leaf rust resistance mechanisms.


Subject(s)
Disease Resistance/genetics , MicroRNAs/genetics , Plant Proteins/genetics , Triticum/genetics , Basidiomycota/pathogenicity , Chromosome Mapping , Gene Expression Regulation, Plant/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Triticum/growth & development , Triticum/microbiology
19.
Molecules ; 25(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630696

ABSTRACT

The development of nanotechnology in the last two decades has led to the use of silver nanoparticles (AgNPs) in various biomedical applications, including antimicrobial, anti-inflammatory, and anticancer therapies. However, the potential of the medical application of AgNPs depends on the safety of their use. In this work, we assessed the in vitro cytotoxicity and genotoxicity of silver nanoparticles and identified biomolecules covering AgNPs synthesized from actinobacterial strain SH11. The cytotoxicity of AgNPs against MCF-7 human breast cancer cell line and murine macrophage cell line RAW 264.7 was studied by MTT assay, cell LDH (lactate dehydrogenase) release, and the measurement of ROS (reactive oxygen species) level while genotoxicity in Salmonella typhimurium cells was testing using the Ames test. The in vitro analysis showed that the tested nanoparticles demonstrated dose-dependent cytotoxicity against RAW 264.6 macrophages and MCF-7 breast cancer cells. Moreover, biosynthesized AgNPs did not show a mutagenic effect of S. typhimurium. The analyses and identification of biomolecules present on the surface of silver nanoparticles showed that they were associated with proteins. The SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) analysis revealed the presence of 34 and 43 kDa protein bands. The identification of proteins performed by using LC-MS/MS (liquid chromatography with tandem mass spectrometry) demonstrated their highest homology to bacterial porins. Capping biomolecules of natural origin may be involved in the synthesis process of AgNPs or may be responsible for their stabilization. Moreover, the presence of natural proteins on the surface of bionanoparticles eliminates the postproduction steps of capping which is necessary for chemical synthesis to obtain the stable nanostructures required for application in medicine.


Subject(s)
Bacterial Proteins/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Actinobacteria/metabolism , Animals , Bacterial Proteins/chemistry , Cytotoxins/toxicity , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Humans , L-Lactate Dehydrogenase/metabolism , MCF-7 Cells , Metal Nanoparticles/administration & dosage , Mice , Mutagenicity Tests/methods , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Silver/chemistry , Silver/pharmacology , Spectrophotometry, Ultraviolet
20.
Cell Physiol Biochem ; 54(4): 615-628, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32559360

ABSTRACT

BACKGROUND/AIMS: The tumour microenvironment is rich in multiple cells that influence cancer development. Among them, macrophages are the most abundant immune cells, which secrete factors involved in carcinogenesis. Since protein-bound polysaccharides (PBP) from the Coriolus versicolor fungus are believed to inhibit the growth of cancers, in the present study, we investigated whether these PBP influence crosstalk between triple-negative 4T1 breast cancer cells and RAW 264.7 macrophages. METHODS: 4T1 cells were cultured in conditioned media (CM) collected after: stimulation of the macrophages with PBP (CM-PBP) or incubation of non-treated macrophages (CM-NT). A co-cultured model of both cell lines was also employed to investigate the crosstalk between the cells. Cell viability was measured using the MTT assay. The levels of cytokines and chemokines were determined by ELISA methods. Commercial assay kits were used to assess the activity of both arginase 1 and inducible nitric oxide synthase (iNOS) and the level of cell migration. RESULTS: The results revealed that CM-NT promotes proliferation and migration of 4T1 cells, and increases the secretion of pro-angiogenic factors (VEGF, MCP-1) by cancer cells. In contrast, CM-PBP inhibits 4T1 cell growth and migration, decreases the secretion of pro-angiogenic factors (VEGF, MCP-1) and upregulates the production of pro-inflammatory mediators (IL-6, TNF-α) with certain anti-tumoral properties Moreover, PBP-treated CM significantly decreases the level of M2 macrophage markers (arginase 1 activity, IL-10 and TGF-ß concentrations), but upregulates iNOS activity and IL-6 and TNF-α production, which are M1 cell markers. CONCLUSION: The results suggest that PBP suppress the favourable tumour microenvironment by inhibiting the crosstalk between 4T1 cells and macrophages through the regulation of production of angiogenic and inflammatory mediators, and modulating the M1/M2 macrophage subtype.


Subject(s)
Polyporaceae/chemistry , Polysaccharides/pharmacology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/drug effects , Animals , Arginase/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemokine CCL2/metabolism , Chemokines/metabolism , Coculture Techniques , Culture Media, Conditioned/pharmacology , Inflammation/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Mice , Neovascularization, Pathologic/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Transforming Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Necrosis Factor-alpha , Tumor-Associated Macrophages/cytology , Tumor-Associated Macrophages/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...