Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 7265, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790383

ABSTRACT

Coastal reclamation seriously disturbs coastal wetland ecosystems, while its influences on soil microbial communities remain unclear. In this study, we examined the impacts of coastal reclamation on soil microbial communities based on phospholipid fatty acids (PLFA) analysis following the conversion of Phragmites australis wetlands to different land use types. Coastal reclamation enhanced total soil microbial biomass and various species (i.e., gram-positive bacterial, actinomycete, saturated straight-chain, and branched PLFA) following the conversion of P. australis wetland to aquaculture pond, wheat, and oilseed rape fields. In contrast, it greatly decreased total soil microbial biomass and various species following the conversion of P. australis wetland to town construction land. Coastal reclamation reduced fungal:bacterial PLFA, monounsaturated:branched PLFA ratios, whereas increasing gram-positive:gram-negative PLFA ratio following the conversion of P. australis wetland to other land use types. Our study suggested that coastal reclamation shifted soil microbial communities by altering microbial biomass and community composition. These changes were driven primarily by variations in soil nutrient substrates and physiochemical properties. Changes in soil microbial communities following coastal reclamation impacted the decomposition and accumulation of soil carbon and nitrogen, with potential modification of carbon and nitrogen sinks in the ecosystems, with potential feedbacks in response to climate change.

2.
Anticancer Agents Med Chem ; 21(7): 825-838, 2021.
Article in English | MEDLINE | ID: mdl-32416703

ABSTRACT

BACKGROUND: Along with the progress in medicine and therapies, the exploitation of anti-cancer agents focused more on the vital signaling pathways and key biological macromolecules. With rational design and advanced synthesis, quinoline derivatives have been utilized frequently in medicinal chemistry, especially in developing anti-cancer drugs or candidates. METHODS: Using DOI searching, articles published before 2020 all over the world have been reviewed as comprehensively as possible. RESULTS: In this review, we selected the representative quinoline derivate drugs in market or clinical trials, classified them into five major categories with detailed targets according to their main mechanisms, discussed the relationship within the same mechanism, and generated a summative discussion with prospective expectations. For each mechanism, the introduction of the target was presented, with the typical examples of quinoline derivate drugs. CONCLUSION: This review has highlighted the quinoline drugs or candidates, suited them into corresponding targets in their pathways, summarized and discussed. We hope that this review may help the researchers who are interested in discovering quinoline derivate anti-cancer agents obtain considerable understanding of this specific topic. Through the flourishing period and the vigorous strategies in clinical trials, quinoline drugs would be potential but facing new challenges in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Quinolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry
3.
Int J Phytoremediation ; 22(13): 1385-1395, 2020.
Article in English | MEDLINE | ID: mdl-32673058

ABSTRACT

Soil contamination is currently the most severe problem as it poses a toxicological impact on human health and ecosystems. A greenhouse experiment was carried out to investigate the effect of 20 and 40 mg kg-1 of cadmium (Cd) or 50 and 100 mg kg-1 of pyrene (PYR) and the combined effect of Cd-PYR on the growth of Phragmites australis together with the uptake and accumulation of Cd as well as removal of PYR. Results demonstrated that the single or co- contaminants of Cd and PYR did not affect plant growth relative to control treatments, except low Cd and high PYR treatment, which showed a significant increase in 91% biomass compared to the control. However, under the joint effect of Cd-PYR, P. australis was unwilling to uptake and translocate Cd, and bioconcentration factor (BCF) and translocation factor (TrF) values were less than one. The removal rate of PYR in the soils and soil enzymes was negatively impacted at the elevated Cd level in the soil. Our study shows that P. australis may have the potential for phytostabilization but cannot be useful for phytoextraction.


Subject(s)
Cadmium , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Ecosystem , Pyrenes , Soil , Soil Pollutants/analysis
4.
Int J Phytoremediation ; 20(8): 773-779, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29775102

ABSTRACT

Soil contamination with heavy metals and organic pollutants continues to cause major ecological damage and human health problems. Phytoremediation offers a highly promising technology for the recovery of sites contaminated with mixed pollutants. In this study, we performed a greenhouse experiment to investigate the individual and combined effects of cadmium (Cd) and polycyclic aromatic hydrocarbon (PAH) contamination on the growth of Xanthium sibiricum, and also the ability of this species to accumulate and remove Cd and to reduce PAHs over a period of 75 days. Our results demonstrated that individual or combined contamination by Cd and PAHs showed no significant differences to the control treatment except in the high Cd treatment. The reduction of PAH concentration in the soil with the passage of time was similar in the presence or absence of plants. At higher levels of Cd, the removal of pyrene decreased in both planted and non-planted soils; however, this effect might be due to the higher Cd content. Soil dehydrogenase and polyphenol oxidase activities showed that soil contamination did not have a significant effect on the removal of PAHs. Overall, our results suggest that X. sibiricum might be a suitable species for use in the phytoremediation of contaminated soils.


Subject(s)
Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Xanthium , Biodegradation, Environmental , Cadmium/analysis , Humans , Soil
5.
Sci Rep ; 7(1): 8028, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28808325

ABSTRACT

Phytoremediation is a promising technology for the remediation of sites co-contaminated with inorganic (heavy metal) and organic pollutants. A greenhouse experiment was conducted to investigate the independent and interactive effects of cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) on the growth of the wetland plant Acorus calamus and its ability to uptake, accumulate, and remove pollutants from soils. Our results showed that growth and biomass of A. calamus were significantly influenced by the interaction of Cd and PAHs after 60 days of growth. The combined treatment of low Cd and low PAHs increased plant biomass and Cd accumulation in plant tissues, thus enhancing Cd removal. Dissipation of PAHs from soils was not significantly influenced by Cd addition or by the presence of plants. Correlation analysis also indicated a positive relationship between residual concentrations of phenantherene and pyrene (PAHs), whereas enzyme activities (dehydrogenase and polyphenol oxidase) were negatively correlated with each other. Cluster analysis was used to evaluate the similarity between different treatments during phytoremediation of Cd and PAHs. Our results suggest that A. calamus might be useful for phytoremediation of co-contaminated soil.


Subject(s)
Acorus/metabolism , Cadmium/metabolism , Phenanthrenes/metabolism , Pyrenes/metabolism , Soil/chemistry , Cadmium/analysis , Catechol Oxidase/metabolism , Environmental Restoration and Remediation/methods , Oxidoreductases/metabolism , Phenanthrenes/analysis , Plant Proteins/metabolism , Pyrenes/analysis
6.
PLoS One ; 12(7): e0179875, 2017.
Article in English | MEDLINE | ID: mdl-28686667

ABSTRACT

Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.


Subject(s)
Ecosystem , Water Cycle , Water Supply , Animals , Biomass , Carbon Cycle , Carbon Dioxide/metabolism , Climate Change , Desert Climate , Grassland , Humans , Kazakhstan , Meteorology , Soil/chemistry , Water/chemistry
7.
Sci Rep ; 6: 33600, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27646687

ABSTRACT

The plants effect in subsurface flow constructed wetlands (SSF-CWs) is controversial, especially at low temperatures. Consequently, several SSF-CWs planted with Iris pseudacorus (CWI) or Typha orientalis Presl. (CWT) and several unplanted ones (CWC) were set up and fed with secondary effluent of sewage treatment plant during the winter in Eastern China. The 16S rDNA Illumina Miseq sequencing analysis indicated the positive effects of I. pseudacorus on the bacterial community richness and diversity in the substrate. Moreover, the community compositions of the bacteria involved with denitrification presented a significant difference in the three systems. Additionally, higher relative abundances of nitrifying bacteria (0.4140%, 0.2402% and 0.4318% for Nitrosomonas, Nitrosospira and Nitrospira, respectively) were recorded in CWI compared with CWT (0.2074%, 0.0648% and 0.0181%, respectively) and CWC (0.3013%, 0.1107% and 0.1185%, respectively). Meanwhile, the average removal rates of NH4(+)-N and TN in CWI showed a prominent advantage compared to CWC, but no distinct advantage was found in CWT. The hardy plant I. pseudacorus, which still had active root oxygen release in cold temperatures, positively affected the abundance of nitrifying bacteria in the substrate, and accordingly was supposed to contribute to a comparatively high nitrogen removal efficiency of the system during the winter.


Subject(s)
Microbiota , Nitrogen/metabolism , Plants , Seasons , Wetlands , Bacteria , Biodiversity , Biomass , Ecosystem , Metagenome , Metagenomics , RNA, Ribosomal, 16S/genetics
8.
Sci Rep ; 6: 26880, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27241173

ABSTRACT

The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.


Subject(s)
Introduced Species , Microbial Consortia/physiology , Poaceae/physiology , Soil Microbiology , Soil/chemistry , Wetlands , Bacteria/classification , Bacteria/growth & development , Biodiversity , Biological Oxygen Demand Analysis , Biomass , Carbon/chemistry , China , Fatty Acids/chemistry , Fungi/classification , Fungi/physiology , Nitrogen/chemistry , Time Factors , Water/chemistry , Wettability
9.
Genes Genet Syst ; 91(1): 11-4, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27040146

ABSTRACT

The Anhui elm Ulmus gaussenii is listed as a critically endangered species by the International Union for Conservation of Nature and is endemic to China, where its only population is restricted to Langya Mountain in Chuzhou, Anhui Province. To better understand the population genetics of U. gaussenii, we developed 12 microsatellite markers using an improved technique. The 12 markers were polymorphic, with the number of alleles per locus ranging from two to nine. Observed and expected heterozygosities ranged from 0.021 to 0.750 and 0.225 to 0.744, respectively. The inbreeding coefficient ranged from -0.157 to 0.960. Significant linkage disequilibrium was detected for two pairs of loci, and significant deviations from Hardy-Weinberg equilibrium were found in nine loci. These microsatellite markers will contribute to the studies of population genetics in U. gaussenii, which in turn will contribute to species conservation and protection.


Subject(s)
Genetics, Population , Microsatellite Repeats/genetics , Ulmus/genetics , Alleles , Animals , China , Conservation of Natural Resources , Endangered Species , Linkage Disequilibrium
10.
PeerJ ; 4: e1953, 2016.
Article in English | MEDLINE | ID: mdl-27123381

ABSTRACT

Background. The decline of submerged plant populations due to high heavy metal (e.g., Cu) levels in sediments and ammonia nitrogen (ammonia-N) accumulation in the freshwater column has become a significant global problem. Previous studies have evaluated the effect of ammonia-N on submerged macrophytes, but few have focused on the influence of sediment Cu on submerged macrophytes and their combined effects. Methods. In this paper, we selected three levels of ammonia-N (0, 3, and 6 mg L(-1)) and sediment Cu (25.75 ± 6.02 as the control, 125.75 ± 6.02, and 225.75 ± 6.02 mg kg(-1)), to investigate the influence of sediment Cu and ammonia-N on submerged Vallisneria natans. We measured the relative growth rate (RGR), above- and below- ground biomass, chlorophyll, non-protein thiol (NP-SH), and free proline. Results and Discussion. The below-ground biomass of V. natans decreased with increasing Cu sediment levels, suggesting that excessive sediment Cu can result in significant damage to the root of V. natans. Similarly, the above-ground biomass significantly decreased with increasing ammonia-N concentrations, indicating that excessive water ammonia-N can cause significant toxicity to the leaf of V. natans. In addition, high ammonia-N levels place a greater stress on submerged plants than sediment Cu, which is indicated by the decline of RGR and chlorophyll, and the increase of (NP-SH) and free proline. Furthermore, high sediment Cu causes ammonia-N to impose greater injury on submerged plants, and higher sediment Cu levels (Cu ≥ 125.75 mg kg(-1)) led to the tolerant values of ammonia-N for V. natans decreasing from 6 to 3 mg L(-1). This study suggests that high sediment Cu restricts the growth of plants and intensifies ammonia-N damage to V. natans.

SELECTION OF CITATIONS
SEARCH DETAIL
...