Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
FASEB J ; 36(3): e22182, 2022 03.
Article in English | MEDLINE | ID: mdl-35113455

ABSTRACT

Pre-pandemic influenza H5N1 vaccine has relatively low immunogenicity and often requires high antigen amounts and two immunizations to induce protective immunity. Incorporation of vaccine adjuvants is promising to stretch vaccine doses during pandemic outbreaks. This study presents a physical radiofrequency (RF) adjuvant (RFA) to conveniently and effectively increase the immunogenicity and efficacy of H5N1 vaccine without modification of vaccine preparation. Physical RFA is based on a brief RF treatment of the skin to induce thermal stress to enhance intradermal vaccine-induced immune responses with minimal local or systemic adverse reactions. We found that physical RFA could significantly increase H5N1 vaccine-induced hemagglutination inhibition antibody titers in murine models. Intradermal H5N1 vaccine in the presence of RFA but not vaccine alone significantly lowered lung viral titers, reduced body weight loss, and improved survival rates after lethal viral challenges. The improved protection in the presence of RFA was correlated with enhanced humoral and cellular immune responses to H5N1 vaccination in both male and female mice, indicating no gender difference of RFA effects in murine models. Our data support further development of the physical RFA to conveniently enhance the efficacy of H5N1 vaccine.


Subject(s)
Immunity, Cellular/immunology , Immunity, Humoral/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Viral/immunology , Female , Hemagglutination Inhibition Tests/methods , Lung/immunology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Pandemics/prevention & control , Vaccination/methods
2.
Vaccines (Basel) ; 9(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34579202

ABSTRACT

With the success of COVID-19 vaccines, newly created mRNA vaccines against other infectious diseases are beginning to emerge. Here, we review the structural elements required for designing mRNA vaccine constructs for effective in vitro synthetic transcription reactions. The unprecedently speedy development of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was enabled with previous innovations in nucleoside modifications during in vitro transcription and lipid nanoparticle delivery materials of mRNA. Recent updates are briefly described in the status of mRNA vaccines against SARS-CoV-2, influenza virus, and other viral pathogens. Unique features of mRNA vaccine platforms and future perspectives are discussed.

3.
Cells ; 10(6)2021 06 06.
Article in English | MEDLINE | ID: mdl-34204163

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.


Subject(s)
Aging/physiology , COVID-19/prevention & control , COVID-19/therapy , Chemoprevention/trends , Metabolic Syndrome/therapy , Aging/drug effects , Aging/immunology , COVID-19/diagnosis , COVID-19/epidemiology , Chemoprevention/methods , History, 21st Century , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Patient Care Planning/trends , Prevalence , Prognosis , Severity of Illness Index , Vulnerable Populations
4.
Vaccines (Basel) ; 9(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805473

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be expanding the pandemic disease across the globe. Although SARS-CoV-2 vaccines were rapidly developed and approved for emergency use of vaccination in humans, supply and production difficulties are slowing down the global vaccination program. The efficacy of many different versions of vaccine candidates and adjuvant effects remain unknown, particularly in the elderly. In this study, we compared the immunogenic properties of SARS-CoV-2 full-length spike (S) ectodomain in young adult and aged mice, S1 with receptor binding domain, and S2 with fusion domain. Full-length S was more immunogenic and effective in inducing IgG antibodies after low dose vaccination, compared to the S1 subunit. Old-aged mice induced SARS-CoV-2 spike-specific IgG antibodies with neutralizing activity after high dose S vaccination. With an increased vaccine dose, S1 was highly effective in inducing neutralizing and receptor-binding inhibiting antibodies, although both S1 and S2 subunit domain vaccines were similarly immunogenic. Adjuvant effects were significant for effective induction of IgG1 and IgG2a isotypes, neutralizing and receptor-binding inhibiting antibodies, and antibody-secreting B cell and interferon-γ secreting T cell immune responses. Results of this study provide information in designing SARS-CoV-2 spike vaccine antigens and effective vaccination in the elderly.

5.
Sci Rep ; 11(1): 4151, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603072

ABSTRACT

Hemagglutinin (HA)-based current vaccines provide suboptimum cross protection. Influenza A virus contains an ion channel protein M2 conserved extracellular domain (M2e), a target for developing universal vaccines. Here we generated reassortant influenza virus rgH3N2 4xM2e virus (HA and NA from A/Switzerland/9715293/2013/(H3N2)) expressing chimeric 4xM2e-HA fusion proteins with 4xM2e epitopes inserted into the H3 HA N-terminus. Recombinant rgH3N2 4xM2e virus was found to retain equivalent growth kinetics as rgH3N2 in egg substrates. Intranasal single inoculation of mice with live rgH3N2 4xM2e virus was effective in priming the induction of M2e specific IgG antibody responses in mucosal and systemic sites as well as T cell responses. The rgH3N2 4xM2e primed mice were protected against a broad range of different influenza A virus subtypes including H1N1, H3N2, H5N1, H7N9, and H9N2. The findings support a new approach to improve the efficacy of current vaccine platforms by recombinant influenza virus inducing immunity to HA and cross protective M2e antigens.


Subject(s)
Cross Protection/immunology , Hemagglutinins/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Recombinant Fusion Proteins/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , HEK293 Cells , Humans , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Vaccination/methods
6.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271920

ABSTRACT

Respiratory syncytial virus (RSV) is one of the most important pathogens causing significant morbidity and mortality in infants and the elderly. Live attenuated influenza vaccine (LAIV) is a licensed vaccine platform in humans and it is known to induce broader immune responses. RSV G attachment proteins mediate virus binding to the target cells and they contain a conserved central domain with neutralizing epitopes. Here, we generated recombinant LAIV based on the attenuated A/Puerto Rico/8/1934 virus backbone, expressing an RSV conserved G-domain in a chimeric hemagglutinin (HA) fusion molecule (HA-G). The attenuated phenotypes of chimeric HA-G LAIV were evident by restricted replication in the upper respiratory tract and low temperature growth characteristics. The immunization of mice with chimeric HA-G LAIV induced significant increases in G-protein specific IgG2a (T helper type 1) and IgG antibody-secreting cell responses in lung, bronchioalveolar fluid, bone marrow, and spleens after RSV challenge. Vaccine-enhanced disease that is typically caused by inactivated-RSV vaccination was not observed in chimeric HA-G LAIV as analyzed by lung histopathology. These results in this study suggest a new approach of developing an RSV vaccine candidate while using recombinant LAIV, potentially conferring protection against influenza virus and RSV.

7.
Sci Rep ; 10(1): 19374, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168920

ABSTRACT

Small-molecule inhibitors of non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) have shown to stimulate ß-cell regeneration in multiple species. Here we demonstrate that TBK1 is predominantly expressed in ß-cells in mammalian islets. Proteomic and transcriptome analyses revealed that genetic silencing of TBK1 increased expression of proteins and genes essential for cell proliferation in INS-1 832/13 rat ß-cells. Conversely, TBK1 overexpression decreased sensitivity of ß-cells to the elevation of cyclic AMP (cAMP) levels and reduced proliferation of ß-cells in a manner dependent on the activity of cAMP-hydrolyzing phosphodiesterase 3 (PDE3). While the mitogenic effect of (E)3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA) is derived from inhibition of TBK1, PIAA augmented glucose-stimulated insulin secretion (GSIS) and expression of ß-cell differentiation and proliferation markers in human embryonic stem cell (hESC)-derived ß-cells and human islets. TBK1 expression was increased in ß-cells upon diabetogenic insults, including in human type 2 diabetic islets. PIAA enhanced expression of cell cycle control molecules and ß-cell differentiation markers upon diabetogenic challenges, and accelerated restoration of functional ß-cells in streptozotocin (STZ)-induced diabetic mice. Altogether, these data suggest the critical function of TBK1 as a ß-cell autonomous replication barrier and present PIAA as a valid therapeutic strategy augmenting functional ß-cells.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Enzymologic , Insulin-Secreting Cells/enzymology , Protein Serine-Threonine Kinases/biosynthesis , Regeneration , Animals , Cell Line, Tumor , Gene Silencing , Human Embryonic Stem Cells/enzymology , Humans , Insulin/genetics , Insulin/metabolism , Insulin Secretion , Protein Serine-Threonine Kinases/genetics , Rats
8.
Virology ; 550: 51-60, 2020 11.
Article in English | MEDLINE | ID: mdl-32882637

ABSTRACT

Influenza virus neuraminidase (NA) contains a universally conserved epitope (NAe, NA222-230). However, no studies have reported vaccines targeting this NA conserved epitope and inducing antibodies recognizing NAe. The extracellular domain of M2 (M2e) is considered as an attractive target for a universal influenza vaccine. We generated recombinant influenza H1N1 viruses expressing conserved epitopes in hemagglutinin (HA) molecules: NAe (NAe-HA) or M2e (M2e-HA) within the HA head domain. Inactivated recombinant NAe-HA and M2e-HA viruses were more effective in inducing IgG antibodies specific for an inserted conserved epitope than live recombinant virus. Recombinant inactivated M2e-HA virus vaccination induced cross protection against H3N2 virus with less weight loss compared to NAe-HA and was more effective in inducing humoral and cellular M2e immune responses. This study provides insight into developing recombinant influenza virus vaccines compatible with current platforms to induce antibody responses to conserved poorly immunogenic epitopes.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/biosynthesis , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Reassortant Viruses/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Viral/biosynthesis , Cross Protection , Epitopes/chemistry , Epitopes/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H9N2 Subtype/drug effects , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Mice , Mice, Inbred BALB C , Neuraminidase/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Reassortant Viruses/drug effects , Reassortant Viruses/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccination/methods , Vaccines, Inactivated , Viral Matrix Proteins/genetics
9.
Vaccine ; 38(36): 5783-5792, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32674907

ABSTRACT

Lactic acid bacteria Lactobacillus casei DK128 isolated from fermented vegetable foods was suggested to stimulate innate immune responses. Here, we investigated whether heat-killed DK128 would exhibit adjuvant effects on enhancing the efficacy of influenza vaccination. Immunization of mice with split influenza virus vaccine in the presence of heat-killed DK128 induced significantly higher levels of both IgG1 and IgG2c isotype antibodies than those by vaccine only. A single dose DK128-adjuvanted influenza vaccination conferred higher efficacy of protection, as evidenced by intact lung function, less weight loss, enhanced clearance of lung viral loads, and lower levels of inflammatory cytokines and infiltrates. Immunization of CD4 T cell-knockout (CD4KO) mice with influenza vaccine and DK128, but not with vaccine alone, induced isotype-switched IgG antibodies and protection against lethal challenge in CD4KO mice. The results in this study suggest heat-killed DK128 as a potential vaccine adjuvant, promoting the induction of IgG isotype switching in CD4-deficient condition and enhancing protective efficacy of split influenza vaccination in immunocompromised and immune-competent subjects.


Subject(s)
Influenza Vaccines , Influenza, Human , Lacticaseibacillus casei , Orthomyxoviridae Infections , Adjuvants, Immunologic , Animals , Antibodies, Viral , Immunity , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae Infections/prevention & control , Vaccination
10.
Vaccine ; 37(44): 6656-6664, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31542260

ABSTRACT

Pre-fusion stabilizing mutations (DS-Cav1) in soluble fusion (F) proteins of human respiratory syncytial virus (RSV) were previously reported. Here we investigated the antigenic and immunogenic properties of pre-fusion like RSV F proteins on enveloped virus-like particles (VLP). Additional mutations were introduced to DS-Cav1 (F-dcmTM VLP); fusion peptide deletion and cleavage mutation site 1 (F1d-dcmTM VLP) or both sites (F12d-dcmTM VLP). F1d-dcmTM VLP and F12d-dcmTM VLP displayed higher reactivity against pre-fusion specific site Ø and antigenic site I and II specific monoclonal antibodies, compared to F-dcmTM VLP with DS-Cav1 only. Mice immunized with F1d-dcmTM VLP and F12d-dcmTM VLP induced higher levels of DS-Cav1 pre-fusion specific IgG antibodies, RSV neutralizing activity titers, and effective lung viral clearance after challenge. These results suggest that cleavage site mutations and fusion peptide deletion in addition to DS-Cav1 mutations have contributed to structural stabilization of pre-fusion like F conformation on enveloped VLP, capable of inducing high levels of pre-fusion F specific and RSV neutralizing antibodies.


Subject(s)
Immunogenicity, Vaccine , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccines, Virus-Like Particle/immunology , Viral Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Immunization , Mice , Mutation , Neutralization Tests , Respiratory Syncytial Virus, Human/genetics , Vero Cells , Viral Fusion Proteins/genetics
11.
Antiviral Res ; 168: 100-108, 2019 08.
Article in English | MEDLINE | ID: mdl-31150678

ABSTRACT

Clinical trials with alum-adjuvanted formalin-inactivated human respiratory syncytial virus (FI-RSV) vaccine failed in children due to vaccine-enhanced disease upon RSV infection. In this study, we found that inactivated, detergent-split RSV vaccine (Split) displayed higher reactivity against neutralizing antibodies in vitro and less histopathology in primed adult mice after challenge, compared to FI-RSV. The immunogenicity and efficacy of FI-RSV and Split RSV vaccine were further determined in 2 weeks old mice after a single dose in the absence or presence of monophosphoryl lipid A (MPL) + CpG combination adjuvant. Split RSV with MPL + CpG adjuvant was effective in increasing T helper type 1 (Th1) immune responses and IgG2a isotype antibodies, neutralizing activity, and lung viral clearance as well as modulating immune responses to prevent pulmonary histopathology after RSV vaccination and challenge. This study demonstrates the efficacy of Split RSV as an effective vaccine candidate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus, Human/immunology , Alum Compounds/administration & dosage , Animals , Antibodies, Neutralizing/blood , Cell Line , Humans , Immunoglobulin G/blood , Lipid A/administration & dosage , Lipid A/analogs & derivatives , Lung/drug effects , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Oligodeoxyribonucleotides/administration & dosage , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/immunology , Th1 Cells/immunology , Vaccines, Inactivated , Viral Load
12.
J Biol Chem ; 294(13): 5023-5037, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30723154

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus that causes severe hemorrhagic fever with a mortality rate of up to 30% in certain outbreaks worldwide. The virus has wide endemic distribution. There is no effective antiviral therapeutic or FDA approved vaccine for this zoonotic viral illness. The multifunctional CCHFV nucleocapsid protein (N protein) plays a crucial role in the establishment of viral infection and is an important structural component of the virion. Here we show that CCHFV N protein has a distant RNA-binding site in the stalk domain that specifically recognizes the vRNA panhandle, formed by the base pairing of complementary nucleotides at the 5' and 3' termini of the vRNA genome. Using multiple approaches, including filter-bonding analysis, GFP reporter assay, and biolayer interferometry we observed an N protein-panhandle interaction both in vitro and in vivo The purified WT CCHFV N protein and the stalk domain also recognize the vRNA panhandle of hazara virus, another Nairovirus in the family Bunyaviridae, demonstrating the genus-specific nature of N protein-panhandle interaction. Another RNA-binding site was identified at the head domain of CCHFV N protein that nonspecifically recognizes the single strand RNA (ssRNA) of viral or nonviral origin. Expression of CCHFV N protein stalk domain active in panhandle binding, dramatically inhibited the hazara virus replication in cell culture, illustrating the role of N protein-panhandle interaction in Nairovirus replication. Our findings reveal the stalk domain of N protein as a potential target in therapeutic interventions to manage CCHFV disease.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hemorrhagic Fever, Crimean/virology , Nucleocapsid Proteins/metabolism , RNA/metabolism , Binding Sites , Hemorrhagic Fever Virus, Crimean-Congo/chemistry , Hemorrhagic Fever, Crimean/metabolism , Humans , Models, Molecular , Nairovirus/chemistry , Nairovirus/physiology , Nucleocapsid Proteins/chemistry , Protein Domains , Virus Replication
13.
J Virol ; 93(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30541836

ABSTRACT

The hantavirus RNA-dependent RNA polymerase (RdRp) snatches 5' capped mRNA fragments from the host cell transcripts and uses them as primers to initiate transcription and replication of the viral genome in the cytoplasm of infected cells. Hantavirus nucleocapsid protein (N protein) binds to the 5' caps of host cell mRNA and protects them from the attack of cellular decapping machinery. N protein rescues long capped mRNA fragments in cellular P bodies that are later processed by an unknown mechanism to generate 10- to 14-nucleotide-long capped RNA primers with a 3' G residue. Hantavirus RdRp has an N-terminal endonuclease domain and a C-terminal uncharacterized domain that harbors a binding site for the N protein. The purified endonuclease domain of RdRp nonspecifically degraded RNA in vitro It is puzzling how such nonspecific endonuclease activity generates primers of appropriate length and specificity during cap snatching. We fused the N-terminal endonuclease domain with the C-terminal uncharacterized domain of the RdRp. The resulting NC mutant, with the assistance of N protein, generated capped primers of appropriate length and specificity from a test mRNA in cells. Bacterially expressed and purified NC mutant and N protein required further incubation with the lysates of human umbilical vein endothelial cells (HUVECs) for the specific endonucleolytic cleavage of a test mRNA to generate capped primers of appropriate length and defined 3' terminus in vitro Our results suggest that an unknown host cell factor facilitates the interaction between N protein and NC mutant and brings the N protein-bound capped RNA fragments in close proximity to the endonuclease domain of the RdRp for specific cleavage at a precise length from the 5' cap. These studies provide critical insights into the cap-snatching mechanism of cytoplasmic viruses and have revealed potential new targets for their therapeutic intervention.IMPORTANCE Humans acquire hantavirus infection by the inhalation of aerosolized excreta of infected rodent hosts. Hantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with mortality rates of 15% and 50%, respectively (1). Annually 150,000 to 200,000 cases of hantavirus infections are reported worldwide, for which there is no treatment at present. Cap snatching is an early event in the initiation of virus replication in infected hosts. Interruption in cap snatching will inhibit virus replication and will likely improve the prognosis of the hantavirus disease. Our studies provide mechanistic insight into the cap-snatching mechanism and demonstrate the requirement of a host cell factor for successful cap snatching. Identification of this host cell factor will reveal a novel therapeutic target for combating this viral illness.


Subject(s)
Nucleocapsid Proteins/metabolism , Orthohantavirus/genetics , RNA Caps/genetics , RNA, Messenger/metabolism , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/genetics , Cell Line , Endothelial Cells , Genome, Viral/genetics , Hantavirus Infections/genetics , Human Umbilical Vein Endothelial Cells , Humans , RNA/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , Transcription, Genetic/genetics , Virus Replication/genetics
14.
Vaccines (Basel) ; 5(4)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257056

ABSTRACT

Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

15.
PLoS One ; 12(9): e0184935, 2017.
Article in English | MEDLINE | ID: mdl-28922369

ABSTRACT

Crimean Congo hemorrhagic fever, a zoonotic viral disease, has high mortality rate in humans. There is currently no vaccine for Crimean Congo hemorrhagic fever virus (CCHFV) and chemical interventions are limited. The three negative sense genomic RNA segments of CCHFV are specifically encapsidated by the nucleocapsid protein into three ribonucleocapsids, which serve as templates for the viral RNA dependent RNA polymerase. Here we demonstrate that CCHFV nucleocapsid protein has two distinct binding modes for double and single strand RNA. In the double strand RNA binding mode, the nucleocapsid protein preferentially binds to the vRNA panhandle formed by the base pairing of complementary nucleotides at the 5' and 3' termini of viral genome. The CCHFV nucleocapsid protein does not have RNA helix unwinding activity and hence does not melt the duplex vRNA panhandle after binding. In the single strand RNA binding mode, the nucleocapsid protein does not discriminate between viral and non-viral RNA molecules. Binding of both vRNA panhandle and single strand RNA induce a conformational change in the nucleocapsid protein. Nucleocapsid protein remains in a unique conformational state due to simultaneously binding of structurally distinct vRNA panhandle and single strand RNA substrates. Although the role of dual RNA binding modes in the virus replication cycle is unknown, their involvement in the packaging of viral genome and regulation of CCHFV replication in conjunction with RdRp and host derived RNA regulators is highly likely.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Nucleic Acid Conformation , Nucleocapsid Proteins , RNA, Viral , RNA-Binding Proteins , Hemorrhagic Fever Virus, Crimean-Congo/chemistry , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Protein Binding , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
16.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28515298

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus.IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo/physiology , Nucleocapsid Proteins/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Humans , Protein Binding
17.
J Biol Chem ; 291(47): 24702-24714, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27733686

ABSTRACT

An evolutionarily conserved sequence at the 5' terminus of hantaviral genomic RNA plays an important role in viral transcription initiation and packaging of the viral genome into viral nucleocapsids. Interaction of viral nucleocapsid protein (N) with this conserved sequence facilitates mRNA translation by a unique N-mediated translation strategy. Whereas this evolutionarily conserved sequence facilitates virus replication with the assistance of N in eukaryotic hosts having multifaceted antiviral defense, we demonstrate its interaction with N presents a novel target for therapeutic intervention of hantavirus disease. Using a high throughput screening approach, we identified three lead inhibitors that bind and induce structural perturbations in N. The inhibitors interrupt N-RNA interaction and abrogate both viral genomic RNA synthesis and N-mediated translation strategy without affecting the canonical translation machinery of the host cell. The inhibitors are well tolerated by cells and inhibit hantavirus replication with the same potency as ribavarin, a commercially available antiviral. We report the identification of a unique chemical scaffold that disrupts a critical RNA-protein interaction in hantaviruses and holds promise for the development of the first anti-hantaviral therapeutic with broad spectrum antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Hantavirus Infections/drug therapy , Hantavirus Infections/metabolism , Nucleocapsid Proteins/metabolism , Orthohantavirus/metabolism , RNA, Viral/biosynthesis , Antiviral Agents/chemistry , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans
18.
Biomed Res Int ; 2014: 726145, 2014.
Article in English | MEDLINE | ID: mdl-25133179

ABSTRACT

Eugenia singampattiana is an endangered medicinal plant used by the Kani tribals of South India. The plant had been studied for its antioxidant, antitumor, antihyperlipidemic, and antidiabetic activity. But its primary and secondary metabolites profile and its antiviral properties were unknown, and so this study sought to identify this aspect in Eugenia singampattiana plant through different extraction methods along with their activities against porcine reproductive and respiratory syndrome virus (PRRSV). The GC-MS analysis revealed that 11 primary metabolites showed significant variations among the extracts. Except for fructose all other metabolites were high with water extract. Among 12 secondary metabolites showing variations, the levels of 4-hydroxy benzoic acid, caffeic acid, rutin, ferulic acid, coumaric acid, epigallocatechin gallate, quercetin, myricetin, and kaempferol were high with methanol extract. Since the flavonoid content of methanol extracts was high, the antioxidant potential, such as ABTS, and phosphomolybdenum activity increased. The plants antiviral activity against PRRSV was for the first time confirmed and the results revealed that methanol 25 µg and 75 to 100 µg in case of water extracts revealed antiviral activity.


Subject(s)
Antioxidants/pharmacology , Antiviral Agents/pharmacology , Ethnicity , Metabolome/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Syzygium/chemistry , Animals , Cell Line , Endangered Species , Flavonoids/analysis , Free Radical Scavengers/pharmacology , Gas Chromatography-Mass Spectrometry , Humans , India , Phytochemicals/analysis , Plant Leaves/chemistry , Polyphenols/analysis , Porcine respiratory and reproductive syndrome virus/drug effects , Secondary Metabolism
19.
Clin Exp Vaccine Res ; 3(1): 100-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24427767

ABSTRACT

PURPOSE: Foot-and-mouth disease (FMD) is an economically important global animal disease. To control FMD virus (FMDV) outbreaks, a lot of different novel approaches have been attempted. In this study, we proposed a novel porcine reproductive and respiratory syndrome virus (PRRSV) as a replicon vector to express FMDV structural protein. MATERIALS AND METHODS: PRRSV infectious clone (PRRSVK418DM) was used to develop an expression vector through the reverse genetic manipulation of PRRSV; FMDVP12A3C gene of serotype O was synthesized and used for an antigen. MARC-145 cells (African green monkey kidney epithelial cell line) were used for electroporation mediated transfection. The transfection or the expression of P12A3C and N protein of PRRSV was analyzed by either replicon containing PRRSV alone or by co-infection of helper PRRSV. RESULTS: We constructed PRRSVK418DM replicon vector containing FMDVP12A3C, and genome sequences were confirmed by subsequent sequence analysis. In vitro expression of P12A3C and PRRSV N protein was confirmed by immunofluorescence antibody assay using antibodies specific for PRRSV N protein (anti-PRRSV N MAb), FMDV-VP1 (anti-VP1 MAb). CONCLUSION: The results indicate that PRRSV replicon vector can be a promising novel vector system to control FMDV and useful for vaccine development in the future.

20.
J Microbiol Biotechnol ; 22(10): 1350-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23075785

ABSTRACT

Viral pathogens, alongside other pathogens, have major effects on crustacean aquaculture. Hepatopancreatic parvovirus (HPV) is an emerging virus in the shrimp industry and has been detected in shrimp farms worldwide. The HPV genome has greater diversity than other shrimp viruses owing to its wide host range and geographical distribution. Therefore, developing diagnostic tools is essential to detect even small copy numbers from the target region of native HPV isolates. We have developed two easy to use quantitative real-time PCR kits, called Green Star and Dual Star, which contain all of the necessary components for real-time PCR, including HPV primers, using the primers obtained from the sequences of HPV isolates from Korea, and analyzed their specificity, efficiency, and reproducibility. These two kits could detect from 1 to 1 × 10(9) copies of cloned HPV DNA. The minimum detection limits obtained from HPV-infected shrimp were 7.74 × 10(1) and 9.06 × 10(1) copies in the Green Star and Dual Star assay kits, respectively. These kits can be used for rapid, sensitive, and efficient screening for HPV isolates from Korea before the introduction of postlarval stages into culture ponds, thereby decreasing the incidence of early development of the disease.


Subject(s)
DNA, Viral/isolation & purification , Parvoviridae Infections/veterinary , Parvovirus/isolation & purification , Reagent Kits, Diagnostic/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Animals , Base Sequence , Benzothiazoles , DNA Primers/genetics , Diamines , Molecular Sequence Data , Organic Chemicals/chemistry , Parvoviridae Infections/diagnosis , Parvovirus/genetics , Penaeidae/virology , Quinolines , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Republic of Korea , Sensitivity and Specificity , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...