Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 14(632): eabj8186, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35171654

ABSTRACT

Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aß nociceptor, 2 Aδ, 2 Aß, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein-coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha (CALCA) expression in female pruritogen receptor-enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.


Subject(s)
Chronic Pain , Nociceptors , Animals , Female , Ganglia, Spinal/metabolism , Humans , Male , Mice , Nociceptors/metabolism , Sensory Receptor Cells/metabolism , Transcriptome/genetics
2.
Nat Commun ; 12(1): 157, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420038

ABSTRACT

The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.


Subject(s)
Appetite/physiology , High-Throughput Screening Assays/instrumentation , Optogenetics/instrumentation , Stomach/physiology , Vagus Nerve/physiology , Animals , Behavior Observation Techniques/instrumentation , Calcitonin Gene-Related Peptide/genetics , Chemoreceptor Cells/physiology , Equipment Design , Female , Male , Mice, Transgenic , Models, Animal , Neural Pathways/physiology , Remote Sensing Technology/instrumentation , Stomach/cytology , Stomach/innervation , Vagus Nerve/cytology , Wireless Technology/instrumentation
3.
J Neurosci ; 40(18): 3517-3532, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32245829

ABSTRACT

One of the first signs of viral infection is body-wide aches and pain. Although this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization is well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-ß) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I IFNs stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double-stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.SIGNIFICANCE STATEMENT It is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. Although specific mechanisms have been discovered for diverse bacterial and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type I interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling), which is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity.


Subject(s)
Central Nervous System Viral Diseases/metabolism , Interferon Type I/toxicity , Nociceptors/metabolism , Pain Threshold/physiology , Pain/metabolism , Peripheral Nervous System Diseases/metabolism , Animals , Cells, Cultured , Central Nervous System Viral Diseases/chemically induced , Central Nervous System Viral Diseases/pathology , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nociceptors/drug effects , Nociceptors/pathology , Pain/chemically induced , Pain/pathology , Pain Threshold/drug effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...