Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Eur Biophys J ; 52(4-5): 439-443, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37195494

ABSTRACT

The solution properties of two different glycoforms of IgG1 (IgG1Cri and IgG1Wid) are compared using primarily sedimentation equilibrium analysis with two complementary analysis routines: SEDFIT-MSTAR and MULTISIG. IgGCri bears diantennary complex-type glycans on its Fc domain that are fully core fucosylated and partially sialylated, whilst on IgGWid, they are non-fucosylated, partially galactosylated and non-sialylated. IgGWid is also Fab glycosylated. Despite these differences, SEDFIT-MSTAR analysis shows similar weight average molar masses Mw of ~ (150 ± 5) kDa for IgGCri and ~ (154 ± 5) kDa for IgGWid and both glycoforms show evidence of the presence of a small fraction of dimer confirmed by MULTISIG analysis and also by sedimentation coefficient distributions from supportive sedimentation velocity measurements. The closeness of the sedimentation equilibrium behaviour and sedimentation coefficient distributions with a main peak sedimentation coefficient of ~ 6.4S for both glycoforms at different concentrations suggest that the different glycosylation profiles do not significantly impact on molar mass (molecular weight) nor conformation in solution.


Subject(s)
Immunoglobulin G , Polysaccharides , Glycosylation , Immunoglobulin G/metabolism , Physical Phenomena
2.
Front Immunol ; 13: 818382, 2022.
Article in English | MEDLINE | ID: mdl-35154135

ABSTRACT

Intravenous immunoglobulin (IVIG) is used as an immunomodulatory agent in the treatment of various autoimmune/inflammatory diseases although its mechanism of action remains elusive. Recently, nonfucosylated IgG has been shown to be preferentially bound to Fcγ receptor IIIa (FcγRIIIa) on circulating natural killer cells; therefore, we hypothesized that nonfucosylated IVIG may modulate immune responses through FcγRIIIa blockade. Here, homogeneous fucosylated or nonfucosylated glycoforms of normal polyclonal IgG bearing sialylated, galactosylated or nongalactosylated Fc oligosaccharides were generated by chemoenzymatic glycoengineering to investigate whether the IgG glycoforms can inhibit antibody-dependent cellular cytotoxicity (ADCC). Among the six IgG glycoforms, galactosylated, nonfucosylated IgG [(G2)2] had the highest affinity to FcγRIIIa and 20 times higher potency to inhibit ADCC than native IgG. A pilot study of IVIG treatment in mice with collagen antibody-induced arthritis highlighted the low-dose (G2)2 glycoform of IVIG (0.1 g/kg) as an effective immunomodulatory agent as the 10-fold higher dose of native IVIG. These preliminary results suggest that the anti-inflammatory activity of IVIG is in part mediated via activating FcγR blockade by galactosylated, nonfucosylated IgG and that such nonfucosylated IgG glycoforms bound to FcγRs on immune cells play immunomodulatory roles in health and disease. This study provides insights into improved therapeutic strategies for autoimmune/inflammatory diseases using glycoengineered IVIG and recombinant Fc.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Arthritis/drug therapy , Immunoglobulins, Intravenous/pharmacology , Receptors, IgG/immunology , Rituximab/pharmacology , Animals , Fucose/immunology , Glycosylation , Humans , Mice , Pilot Projects
3.
Exp Suppl ; 112: 1-26, 2021.
Article in English | MEDLINE | ID: mdl-34687006

ABSTRACT

Therapeutic monoclonal antibodies (mAbs) are mostly of the IgG class and constitute highly efficacious biopharmaceuticals for a wide range of clinical indications. Full-length IgG mAbs are large proteins that are subject to multiple posttranslational modifications (PTMs) during biosynthesis, purification, or storage, resulting in micro-heterogeneity. The production of recombinant mAbs in nonhuman cell lines may result in loss of structural fidelity and the generation of variants having altered stability, biological activities, and/or immunogenic potential. Additionally, even fully human therapeutic mAbs are of unique specificity, by design, and, consequently, of unique structure; therefore, structural elements may be recognized as non-self by individuals within an outbred human population to provoke an anti-therapeutic/anti-drug antibody (ATA/ADA) response. Consequently, regulatory authorities require that the structure of a potential mAb drug product is comprehensively characterized employing state-of-the-art orthogonal analytical technologies; the PTM profile may define a set of critical quality attributes (CQAs) for the drug product that must be maintained, employing quality by design parameters, throughout the lifetime of the drug. Glycosylation of IgG-Fc, at Asn297 on each heavy chain, is an established CQA since its presence and fine structure can have a profound impact on efficacy and safety. The glycoform profile of serum-derived IgG is highly heterogeneous while mAbs produced in mammalian cells in vitro is less heterogeneous and can be "orchestrated" depending on the cell line employed and the culture conditions adopted. Thus, the gross structure and PTM profile of a given mAb, established for the drug substance gaining regulatory approval, have to be maintained for the lifespan of the drug. This review outlines our current understanding of common PTMs detected in mAbs and endogenous IgG and the relationship between a variant's structural attribute and its impact on clinical performance.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Animals , Antibodies, Monoclonal/metabolism , Glycosylation , Humans , Protein Processing, Post-Translational , Recombinant Proteins/genetics
4.
Exp Suppl ; 112: 481-517, 2021.
Article in English | MEDLINE | ID: mdl-34687020

ABSTRACT

The complex diantennary-type oligosaccharides at Asn297 residues of the IgG heavy chains have a profound impact on the safety and efficacy of therapeutic IgG monoclonal antibodies (mAbs). Fc glycosylation of a mAb is an established critical quality attribute (CQA), and its oligosaccharide profile is required to be thoroughly characterized by state-of-the-art analytical methods. The Fc oligosaccharides are highly heterogeneous, and the differentially glycosylated species (glycoforms) of IgG express unique biological activities. Glycoengineering is a promising approach for the production of selected mAb glycoforms with improved effector functions, and non- and low-fucosylated mAbs exhibiting enhanced antibody-dependent cellular cytotoxicity activity have been approved or are under clinical evaluation for treatment of cancers, autoimmune/chronic inflammatory diseases, and infection. Recently, the chemoenzymatic glycoengineering method that allows for the transfer of structurally defined oligosaccharides to Asn-linked GlcNAc residues with glycosynthase has been developed for remodeling of IgG-Fc oligosaccharides with high efficiency and flexibility. Additionally, various glycoengineering methods have been developed that utilize the Fc oligosaccharides of IgG as reaction handles to conjugate cytotoxic agents by "click chemistry", providing new routes to the design of antibody-drug conjugates (ADCs) with tightly controlled drug-antibody ratios (DARs) and homogeneity. This review focuses on current understanding of the biological relevance of individual IgG glycoforms and advances in the development of next-generation antibody therapeutics with improved efficacy and safety through glycoengineering.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Monoclonal/metabolism , Antibody-Dependent Cell Cytotoxicity , Glycosylation , Immunoglobulin G/metabolism , Oligosaccharides
5.
Adv Biochem Eng Biotechnol ; 175: 281-318, 2021.
Article in English | MEDLINE | ID: mdl-29071407

ABSTRACT

The human genome has become a subject of public interest, whilst the proteome remains the province of specialists. Less appreciated is the human glycoprotein (GP) repertoire (proteoglycome!); however, some 50% of open reading frame genes encode for proteins (P) that may accept the addition of N-linked and/or O-linked sugar chains (oligosaccharides). It is established that the attachment of defined oligosaccharide structures impacts mechanisms of action (MoAs), pharmacokinetics, pharmacodynamics, etc., and is a critical quality attribute (CQA) for recombinant GP therapeutics. The oligosaccharide structure attached at a given site may exhibit structural heterogeneity, and individual structures (glycoforms) may modulate MoAs. The biopharmaceutical industry is challenged, therefore, to produce recombinant GP therapeutics that have structural fidelity to the natural (endogenous) molecule, in non-human cells. Multiple production platforms have been developed that, in addition to the natural glycoform, may produce unnatural glycoforms, including sugar residues that can be immunogenic in human subjects. Following a general introduction to the field, this review discusses glycosylation of recombinant monoclonal antibodies (mAbs), the contribution of glycoforms to MoAs and the development of customised mAb therapeutic glycoforms to optimise MoAs for individual disease indications.


Subject(s)
Antibodies, Monoclonal , Glycoproteins , Antibodies, Monoclonal/metabolism , Glycoproteins/metabolism , Glycosylation , Oligosaccharides , Recombinant Proteins/genetics
6.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32059783

ABSTRACT

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Subject(s)
Autoantibodies/genetics , Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Lymphoma/genetics , Animals , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/pathology , CARD Signaling Adaptor Proteins/genetics , Carrier Proteins/genetics , Clonal Evolution/genetics , Clonal Evolution/immunology , Cyclin D3/genetics , Guanylate Cyclase/genetics , Humans , Immediate-Early Proteins/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Inhibitor of Differentiation Proteins/genetics , Lymphoma/immunology , Lymphoma/pathology , Mice , Mutation/genetics , Mutation/immunology , Neoplasm Proteins/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Suppressor Proteins/genetics , V(D)J Recombination/genetics
7.
Cell Rep ; 21(11): 3243-3255, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29241550

ABSTRACT

The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 residues starting with M53 and ending with N58. G6 binding studies demonstrate the remarkable breadth of binding to 51p1 IGHV1-69 Abs with diverse CDR-H3, light chain, and antigen binding specificities. These studies detail the broad expression of the G6 cross-reactive idiotype (CRI) that further define its potential role in precision medicine.


Subject(s)
Antibodies, Anti-Idiotypic/chemistry , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Receptors, Antigen, B-Cell/chemistry , Amino Acid Sequence , Antibodies, Anti-Idiotypic/genetics , Antibodies, Anti-Idiotypic/immunology , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibody Specificity , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Models, Molecular , Orthomyxoviridae/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Sequence Homology, Amino Acid
8.
Br J Hosp Med (Lond) ; 78(8): 443-447, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28783398

ABSTRACT

In principle the whole human proteome is available for the generation of recombinant proteins and glycoproteins that may serve as drugs (biologics). Endogenous human proteins and glycoproteins are structurally heterogeneous but are recognized as self by the immune system; however, recombinant protein and glycoprotein molecules are necessarily produced in heterologous systems and may include structural variants that are non-self and potentially immunogenic. The addition of human type oligosaccharides may be critical to function while the addition of non-human sugar residues can render biologics immunogenic. A particular concern is the structure of oligosaccharides attached by the hamster and murine cell lines that provide the dominant production platform. Critical structure and function properties that contribute to optimization of therapeutic potential are illustrated through recombinant erythropoietin and antibody therapeutics.


Subject(s)
Biological Products , Translational Research, Biomedical , Animals , Biological Products/economics , Biological Products/immunology , Biological Products/pharmacology , Cost-Benefit Analysis , Genetic Heterogeneity , Humans , Polymorphism, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Translational Research, Biomedical/methods , Translational Research, Biomedical/trends
9.
Clin Chem Lab Med ; 55(3): 424-434, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27505089

ABSTRACT

BACKGROUND: Serum free light chains (FLC) are sensitive biomarkers used for the diagnosis and management of plasma cell dyscrasias, such as multiple myeloma (MM), and are central to clinical screening algorithms and therapy response criteria. We have developed a portable, near-patient, lateral-flow test (Seralite®) that quantitates serum FLC in 10 min, and is designed to eliminate sample processing delays and accelerate decision-making in the clinic. METHODS: Assay interference, imprecision, lot-to-lot variability, linearity, and the utility of a competitive-inhibition design for the elimination of antigen-excess ('hook effect') were assessed. Reference ranges were calculated from 91 healthy donor sera. Preliminary clinical validation was conducted by retrospective analysis of sera from 329 patients. Quantitative and diagnostic results were compared to Freelite®. RESULTS: Seralite® gave a broad competitive-inhibition calibration curve from below 2.5 mg/L to above 200 mg/L, provided good assay linearity (between 1.6 and 208.7 mg/L for κ FLC and between 3.5 and 249.7 mg/L for λ FLC) and sensitivity (1.4 mg/L for κ FLC and 1.7 mg/L for λ FLC), and eliminated anomalous results from antigen-excess. Seralite® gave good diagnostic concordance with Freelite® (Roche Hitachi Cobas C501) identifying an abnormal FLC ratio and FLC difference in 209 patients with newly diagnosed MM and differentiating these patients from normal healthy donors with polyclonal FLC. CONCLUSIONS: Seralite® sensitively quantitates FLC and rapidly identifies clinical conditions where FLC are abnormal, including MM.


Subject(s)
Biomarkers, Tumor/blood , Immunoassay/methods , Immunoglobulin kappa-Chains/blood , Immunoglobulin lambda-Chains/blood , Multiple Myeloma/blood , Humans , Immunoglobulin Light Chains/blood , Limit of Detection , Reference Standards , Reproducibility of Results
10.
Curr Pharm Biotechnol ; 17(15): 1333-1347, 2016.
Article in English | MEDLINE | ID: mdl-27804853

ABSTRACT

Advances in genetic and protein engineering and the ability to maintain proliferating mammalian cells in vitro, has allowed reverse engineering of antibodies, i.e. generation of antibodies having specificity for self-antigens. Thus, the lethal consequence of horror autotoxicus, anti-self-responses as envisaged by Paul Ehrlich (1854-1915), has been turned to advantage for treatment of multiple disease states. In order to reap these benefits, it is essential that, in addition to target specificity, the antibody is customised to deliver appropriate downstream biologic effector activities. Genetic engineering allows the development of any chosen isotype; however, The IgG class predominates in human serum and the majority of monoclonal antibody (mAb) therapeutics are based on the IgG format. This review focuses on the structure and function of the four human IgG isotypes (subclasses) and the biologic functions that their immune complexes activate through interactions with cellular Fc receptors (FcγR & FcRn) and/or the C1q component of complement. The long catabolic half-life (~21 days) of IgG contributes to its efficacy as a therapeutic. Each human IgG subclass exhibits a unique profile of biologic activities that are dependent on the glycoform profile of the IgG-Fc. Our current understanding of IgG structure/function relationships allows protein and glycosylation engineering of the IgG-Fc to enhance or eliminate biologic activities and the generation of therapeutics optimal for a given disease indication.

11.
J Immunol Res ; 2016: 5358272, 2016.
Article in English | MEDLINE | ID: mdl-27191002

ABSTRACT

Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.


Subject(s)
Antibodies, Monoclonal/immunology , Biological Therapy/adverse effects , Protein Processing, Post-Translational , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Animals , Antigen-Antibody Complex , Humans , Immune Tolerance , Protein Aggregates/immunology
12.
MAbs ; 8(4): 787-98, 2016.
Article in English | MEDLINE | ID: mdl-26963739

ABSTRACT

In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Antibodies, Anti-Idiotypic/biosynthesis , Antibodies, Monoclonal, Humanized/biosynthesis , Humans , Mice
13.
J Immunol Methods ; 428: 30-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26627984

ABSTRACT

Glycosylation of the IgG-Fc is essential for optimal binding and activation of Fcγ receptors and the C1q component of complement. However, it has been reported that the effector functions are down-regulated when the Fc glycans terminate in sialic acid residues and that sialylated IgG mediates anti-inflammatory effects of intravenous immunoglobulin (IVIG). Although recombinant IgG is hypo-sialylated, Fc sialylation is shown to be markedly increased when a mouse/human chimeric IgG3 Phe243Ala (F243A) variant is expressed in Chinese hamster ovary (CHO)-K1 cells. Here we investigate whether sialylation is increased in IgG1 F243A when expressed in CHO-K1, mouse myeloma J558L and human embryonic kidney (HEK) 293. Although the sialylation level was 2-5% for IgG1 wild type (WT), it was increased to 31%, 10% and 33% for the variant from CHO-K1, J558L and HEK293 cells, respectively. Interestingly, an increased addition of bisecting GlcNAc and α(1-3)-galactose residues to the Fc glycan was observed for HEK293-derived and J558L-derived IgG1 F243A, respectively. Fucosylation of HEK293-derived IgG1 F243A was maintained despite increased bisecting GlcNAc content. Although sialic acid and bisecting GlcNAc residues are reported to have an opposing effect on antibody-dependent cellular cytotoxicity (ADCC), IgG1 F243A showed 7 times lower ADCC activities than IgG1 WT, irrespective of bisecting GlcNAc residue. Thus, highly sialylated, human cell-derived IgG1 F243A with lowered ADCC activity may be of interest for the development of therapeutic antibodies with anti-inflammatory properties as an alternative to IVIG.


Subject(s)
Immunoglobulin G/genetics , Immunoglobulin G/metabolism , N-Acetylneuraminic Acid/metabolism , Animals , CHO Cells , Cell Line, Tumor , Chromatography, High Pressure Liquid , Cricetulus , Glycosylation , HEK293 Cells , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/chemistry , Mice , Mice, Inbred BALB C , N-Acetylneuraminic Acid/analysis
14.
J Proteome Res ; 14(4): 1657-65, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25761865

ABSTRACT

Granulomatosis with polyangiitis (GPA) is associated with circulating immunoglobulin (Ig) G anti-proteinase 3 specific (anti-PR3) anti-neutrophil cytoplasm antibodies (ANCA), which activate cytokine primed neutrophils via Fcgamma receptors. ANCA are class switched IgG antibodies implying T cell help in their production. Glycosylation of IgG Fc, under the control of T cell cytokines, determines the interaction between IgG and its receptors. Previous studies have reported aberrant glycosylation of Ig Fc in GPA patients. We investigated whether aberrant Fc glycosylation was present on anti-PR3 ANCA as well as whole IgG subclass preparations compared to healthy controls and whether this correlated with Birmingham vasculitis activity scores (BVAS), serum cytokines, and time to remission. Here, IgG Fc glycosylation of GPA patients and controls and anti-PR3 ANCA Fc glycosylation were determined by mass spectrometry of glycopeptides. IgG1 and IgG2 subclasses from GPA patients showed reduced galactosylation, sialylation, and bisection compared to healthy controls. Anti-PR3 IgG1 ANCA Fc galactosylation, sialylation, and bisection were reduced compared to total IgG1 in GPA. Galactosylation of anti-PR3 ANCA Fc correlated with inflammatory cytokines and time to remission but not BVAS. Bisection of anti-PR3 ANCA Fc correlated with BVAS. Total IgG1 and anti-PR3 IgG1 Fc galactosylation were weakly correlated, while bisection of IgG1 and anti-PR3 showed no correlation. Our data indicate that aberrant ANCA galactosylation may be driven in an antigen-specific manner.


Subject(s)
Autoantibodies/metabolism , Granulomatosis with Polyangiitis/metabolism , Immunoglobulin G/metabolism , Myeloblastin/immunology , Adult , Autoantibodies/immunology , Cytokines/blood , Glycosylation , Granulomatosis with Polyangiitis/immunology , Humans , Immunoglobulin G/immunology , Mass Spectrometry , Middle Aged , Vasculitis/pathology
15.
Curr Top Microbiol Immunol ; 382: 165-99, 2014.
Article in English | MEDLINE | ID: mdl-25116100

ABSTRACT

Immunoglobulins and Fc receptors are critical glycoprotein components of the immune system. Fc receptors bind the Fc (effector) region of antibody molecules and communicate information within the innate and adaptive immune systems. Glycosylation of antibodies, particularly in the Fc region of IgG, has been extensively studied in health and disease. The N-glycans in the identical heavy chains have been shown to be critical for maintaining structural integrity, communication with the Fc receptor and the downstream immunological response. Less is known about glycosylation of the Fc receptor in either healthy or disease states, however, recent studies have implicated an active role for receptor associated oligosaccharides in the antibody-receptor interaction. Research into Fc receptor glycosylation is increasing rapidly, where Fc receptors are routinely used to analyze the binding of therapeutic monoclonal antibodies and where glycosylation of receptors expressed by cells of the immune system could potentially be used to mediate and control the differential binding of immunoglobulins. Here we discuss the glycosylation of immunoglobulin antibodies (IgA, IgE, IgG) and the Fc receptors (FcαR, FcεR, FcγR, FcRn) that bind them, the function of carbohydrates in the immune response and recent advances in our understanding of these critical glycoproteins.


Subject(s)
Receptors, Fc/metabolism , Animals , Glycosylation , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology
16.
Mol Immunol ; 62(1): 46-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24956411

ABSTRACT

The Fc region of IgG antibodies, important for effector functions such as antibody-dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement activation, contains an oligosaccharide moiety covalently attached to each C(H)2 domain. The oligosaccharide not only orients the C(H)2 domains but plays an important role in influencing IgG effector function, and engineering the IgG-Fc oligosaccharide moiety is an important aspect in the design of therapeutic monoclonal IgG antibodies. Recently we reported the crystal structure of glycosylated IgG4-Fc, revealing structural features that could explain the anti-inflammatory biological properties of IgG4 compared with IgG1. We now report the crystal structure of enzymatically deglycosylated IgG4-Fc, derived from human serum, at 2.7Šresolution. Intermolecular C(H)2-C(H)2 domain interactions partially bury the C(H)2 domain surface that would otherwise be exposed by the absence of oligosaccharide, and two Fc molecules are interlocked in a symmetric, open conformation. The conformation of the C(H)2 domain DE loop, to which oligosaccharide is attached, is altered in the absence of carbohydrate. Furthermore, the C(H)2 domain FG loop, important for Fcγ receptor and C1q binding, adopts two different conformations. One loop conformation is unique to IgG4 and would disrupt binding, consistent with IgG4's anti-inflammatory properties. The second is similar to the conserved conformation found in IgG1, suggesting that in contrast to IgG1, the IgG4 C(H)2 FG loop is dynamic. Finally, crystal packing reveals a hexameric arrangement of IgG4-Fc molecules, providing further clues about the interaction between C1q and IgG.


Subject(s)
Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Crystallography, X-Ray , Glycosylation , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Models, Molecular , Protein Binding , Protein Folding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary
17.
J Mol Biol ; 426(3): 630-44, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24211234

ABSTRACT

Human IgG4, normally the least abundant of the four subclasses of IgG in serum, displays a number of unique biological properties. It can undergo heavy-chain exchange, also known as Fab-arm exchange, leading to the formation of monovalent but bispecific antibodies, and it interacts poorly with FcγRII and FcγRIII, and complement. These properties render IgG4 relatively "non-inflammatory" and have made it a suitable format for therapeutic monoclonal antibody production. However, IgG4 is also known to undergo Fc-mediated aggregation and has been implicated in auto-immune disease pathology. We report here the high-resolution crystal structures, at 1.9 and 2.35 Å, respectively, of human recombinant and serum-derived IgG4-Fc. These structures reveal conformational variability at the CH3-CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, FcγRIII and C1q binding properties of IgG4 compared with IgG1 and -3. In contrast to other IgG subclasses, this unique conformation folds the FG loop away from the CH2 domain, precluding any interaction with the lower hinge region, which may further facilitate Fab-arm exchange by destabilisation of the hinge. The crystals of IgG4-Fc also display Fc-Fc packing contacts with very extensive interaction surfaces, involving both a consensus binding site in IgG-Fc at the CH2-CH3 interface and known hydrophobic aggregation motifs. These Fc-Fc interactions are compatible with intact IgG4 molecules and may provide a model for the formation of aggregates of IgG4 that can cause disease pathology in the absence of antigen.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Receptors, IgG/metabolism , Recombinant Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Immunoglobulin Fc Fragments/metabolism , Models, Molecular , Protein Structure, Tertiary , Recombinant Proteins/metabolism
18.
J Immunol Methods ; 391(1-2): 1-13, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23388695

ABSTRACT

Monoclonal κ and λ immunoglobulin free light chain (FLC) paraproteins in serum and urine are important markers in the diagnosis and monitoring of B cell dyscrasias. Current nephelometric and turbidimetric methods that use sheep polyclonal antisera to quantify serum FLC have a number of well-observed limitations. In this report, we describe an improved method using specific mouse anti-human FLC monoclonal antibodies (mAbs). Anti-κ and anti-λ FLC mAbs were, separately, covalently coupled to polystyrene Xmap® beads and assayed, simultaneously, in a multi-plex format by Luminex® (mAb assay). The mAbs displayed no cross-reactivity to bound LC, the alternate LC type, or other human proteins and had improved sensitivity and specificity over immunofixation electrophoresis (IFE) and Freelite™. The assay gives good linearity and sensitivity (<1 mg/L), and the competitive inhibition format gave a broad calibration curve up to 437.5 mg/L and prevented anomalous results for samples in antigen excess i.e. high FLC levels. The mAbs displayed good concordance with Freelite™ for the quantitation of normal polyclonal FLC in plasma from healthy donors (n=249). The mAb assay identified all monoclonal FLC in serum from consecutive patient samples (n=1000; 50.1% with monoclonal paraprotein by serum IFE), and all FLC in a large cohort of urine samples tested for Bence Jones proteins (n=13090; 22.8% with monoclonal κ, 9.0% with monoclonal λ, and 0.8% with poly LC detected by urine IFE). Importantly this shows that the mAbs are at least close to the ideal of detecting FLC from all patients and neoplastic plasma cell clones. Given the overall effectiveness of the anti-FLC mAbs, further clinical validation is now warranted on serial samples from a range of patients with B cell disorders. Use of these mAbs on other assay platforms should also be investigated.


Subject(s)
Antibodies, Monoclonal , Biomarkers, Tumor/blood , Biomarkers, Tumor/urine , Immunoassay , Immunoglobulin kappa-Chains/blood , Immunoglobulin kappa-Chains/urine , Immunoglobulin lambda-Chains/blood , Immunoglobulin lambda-Chains/urine , Multiple Myeloma/diagnosis , Animals , Antibody Specificity , Binding, Competitive , Calibration , Case-Control Studies , Cross Reactions , Humans , Immunoassay/standards , Linear Models , Mice , Mice, Inbred BALB C , Multiple Myeloma/blood , Multiple Myeloma/immunology , Multiple Myeloma/urine , Predictive Value of Tests , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
19.
Arch Biochem Biophys ; 526(2): 159-66, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22465822

ABSTRACT

We live in a hostile environment but are protected by the innate and adaptive immune system. A major component of the latter is mediated by antibody molecules that bind to pathogens, with exquisite specificity, and the immune complex formed activates cellular mechanisms leading to the removal and destruction of the complex. Five classes of antibody are identified; however, the IgG class predominates in serum and a majority of monoclonal antibody (mAb) therapeutics are based on the IgG format. Selection within the antibody repertoire allows the generation of (mAb) having specificity for any selected target, including human antigens. This review focuses on the structure and function of the Fc region of IgG molecules that mediates biologic functions, within immune complexes, by interactions with cellular Fc receptors (FcγR) and/or the C1q component of complement. A property of IgG that is suited to its use as a therapeutic is the long catabolic half life of ~21 days, mediated through the structurally distinct neonatal Fc receptor (FcRn). Our understanding of structure/function relationships is such that we can contemplate engineering the IgG-Fc to enhance or eliminate biologic activities to generate therapeutics considered optimal for a given disease indication. There are four subclasses of human IgG that exhibit high sequence homology but a unique profile of biologic activities. The FcγR and the C1q binding functions are dependent on glycosylation of the IgG-Fc. Normal human serum IgG is comprised of multiple glycoforms and biologic activities, other than catabolism, varies between glycoforms.


Subject(s)
Complement C1q/immunology , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Receptors, Fc/immunology , Animals , Carbohydrate Sequence , Complement Activation , Glycosylation , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Models, Molecular , Molecular Sequence Data , Oligosaccharides/chemistry , Oligosaccharides/immunology , Oligosaccharides/metabolism , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/immunology , Protein Isoforms/metabolism
20.
MAbs ; 3(6): 503-4, 2011.
Article in English | MEDLINE | ID: mdl-22123066

ABSTRACT

The development of an immune response to a protein therapeutic may nullify its beneficial activity or result in adverse events. Immunogenicity is, therefore, a major concern for clinicians, regulatory authorities and the biopharmaceutical industry. These concerns are particularly acute for the treatment of chronic diseases, as opposed to cancer, that may require repeated exposure to therapeutic over extended cycles of remission/relapse. There are many parameters that may be contributory to immunogenicity; however, the "bête noire," for the past decade has been aggregation. ( 1-3).


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antigen-Antibody Complex , Immunity/drug effects , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antigen-Antibody Complex/adverse effects , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/immunology , Humans , Immunity/immunology , Immunoglobulin G/therapeutic use , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...