Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4310, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30333496

ABSTRACT

Paternal contributions to epigenetic inheritance are not well understood. Paternal contributions via marked nucleosomes are particularly understudied, in part because sperm in some organisms replace the majority of nucleosome packaging with protamine packaging. Here we report that in Caenorhabditis elegans sperm, the genome is packaged in nucleosomes and carries a histone-based epigenetic memory of genes expressed during spermatogenesis, which unexpectedly include genes well known for their expression during oogenesis. In sperm, genes with spermatogenesis-restricted expression are uniquely marked with both active and repressive marks, which may reflect a sperm-specific chromatin signature. We further demonstrate that epigenetic information provided by sperm is important and in fact sufficient to guide proper germ cell development in offspring. This study establishes one mode of paternal epigenetic inheritance and offers a potential mechanism for how the life experiences of fathers may impact the development and health of their descendants.


Subject(s)
Caenorhabditis elegans/metabolism , Epigenesis, Genetic , Histones/metabolism , Nucleosomes/metabolism , Spermatozoa/metabolism , Animals , Caenorhabditis elegans/growth & development , Fertility , Male , Oogenesis , Spermatogenesis
2.
Genome Res ; 27(1): 75-86, 2017 01.
Article in English | MEDLINE | ID: mdl-27979995

ABSTRACT

Nucleosomes have structural and regulatory functions in all eukaryotic DNA-templated processes. The position of nucleosomes on DNA and the stability of the underlying histone-DNA interactions affect the access of regulatory proteins to DNA. Both stability and position are regulated through DNA sequence, histone post-translational modifications, histone variants, chromatin remodelers, and transcription factors. Here, we explored the functional implications of nucleosome properties on gene expression and development in Caenorhabditis elegans embryos. We performed a time-course of micrococcal nuclease (MNase) digestion and measured the relative sensitivity or resistance of nucleosomes throughout the genome. Fragile nucleosomes were defined by nucleosomal DNA fragments that were recovered preferentially in early MNase-digestion time points. Nucleosome fragility was strongly and positively correlated with the AT content of the underlying DNA sequence. There was no correlation between promoter nucleosome fragility and the levels of histone modifications or histone variants. Genes with fragile nucleosomes in their promoters tended to be lowly expressed and expressed in a context-specific way, operating in neuronal response, the immune system, and stress response. In addition to DNA-encoded nucleosome fragility, we also found fragile nucleosomes at locations where we expected to find destabilized nucleosomes, for example, at transcription factor binding sites where nucleosomes compete with DNA-binding factors. Our data suggest that in C. elegans promoters, nucleosome fragility is in large part DNA-encoded and that it poises genes for future context-specific activation in response to environmental stress and developmental cues.


Subject(s)
DNA-Binding Proteins/genetics , Histones/genetics , Nucleosomes/genetics , Transcription, Genetic , Animals , Binding Sites/drug effects , Caenorhabditis elegans/genetics , Chromatin Assembly and Disassembly/drug effects , DNA-Binding Proteins/metabolism , Histones/metabolism , Micrococcal Nuclease/pharmacology , Promoter Regions, Genetic , Transcription Factors/genetics
3.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25164756

ABSTRACT

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Subject(s)
Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Chromatin/genetics , Chromatin/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Animals , Cell Line , Centromere/genetics , Centromere/metabolism , Chromatin/chemistry , Chromatin Assembly and Disassembly/genetics , DNA Replication/genetics , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Heterochromatin/chemistry , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/chemistry , Histones/metabolism , Humans , Molecular Sequence Annotation , Nuclear Lamina/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic/genetics , Species Specificity
4.
Genome Res ; 23(8): 1339-47, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23550086

ABSTRACT

RNA polymerase transcription initiation sites are largely unknown in Caenorhabditis elegans. The initial 5' end of most protein-coding transcripts is removed by trans-splicing, and noncoding initiation sites have not been investigated. We characterized the landscape of RNA Pol II transcription initiation, identifying 73,500 distinct clusters of initiation. Bidirectional transcription is frequent, with a peak of transcriptional pairing at 120 bp. We assign transcription initiation sites to 7691 protein-coding genes and find that they display features typical of eukaryotic promoters. Strikingly, the majority of initiation events occur in regions with enhancer-like chromatin signatures. Based on the overlap of transcription initiation clusters with mapped transcription factor binding sites, we define 2361 transcribed intergenic enhancers. Remarkably, productive transcription elongation across these enhancers is predominantly in the same orientation as that of the nearest downstream gene. Directed elongation from an upstream enhancer toward a downstream gene could potentially deliver RNA polymerase II to a proximal promoter, or alternatively might function directly as a distal promoter. Our results provide a new resource to investigate transcription regulation in metazoans.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Enhancer Elements, Genetic , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Animals , Caenorhabditis elegans/metabolism , Chromatin/genetics , Molecular Sequence Annotation , Sequence Analysis, DNA , Transcription Initiation Site , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...