Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Mol Neurodegener ; 19(1): 41, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760857

ABSTRACT

Recent evidence suggests that Alzheimer's disease (AD) genetic risk variants (rs1582763 and rs6591561) of the MS4A locus are genome-wide significant regulators of soluble TREM2 levels such that the minor allele of the protective variant (rs1582763) is associated with higher sTREM2 and lower AD risk while the minor allele of (rs6591561) relates to lower sTREM2 and higher AD risk. Our group previously found that higher sTREM2 relates to higher Aß40, worse blood-brain barrier (BBB) integrity (measured with the CSF/plasma albumin ratio), and higher CSF tau, suggesting strong associations with amyloid abundance and both BBB and neurodegeneration complicate interpretation. We expand on this work by leveraging these common variants as genetic tools to tune the interpretation of high CSF sTREM2, and by exploring the potential modifying role of these variants on the well-established associations between CSF sTREM2 as well as TREM2 transcript levels in the brain with AD neuropathology. Biomarker analyses leveraged data from the Vanderbilt Memory & Aging Project (n = 127, age = 72 ± 6.43) and were replicated in the Alzheimer's Disease Neuroimaging Initiative (n = 399, age = 73 ± 7.39). Autopsy analyses were performed leveraging data from the Religious Orders Study and Rush Memory and Aging Project (n = 577, age = 89 ± 6.46). We found that the protective variant rs1582763 attenuated the association between CSF sTREM2 and Aß40 (ß = -0.44, p-value = 0.017) and replicated this interaction in ADNI (ß = -0.27, p = 0.017). We did not observe this same interaction effect between TREM2 mRNA levels and Aß peptides in brain (Aß total ß = -0.14, p = 0.629; Aß1-38, ß = 0.11, p = 0.200). In contrast to the effects on Aß, the minor allele of this same variant seemed to enhance the association with blood-brain barrier dysfunction (ß = 7.0e-4, p = 0.009), suggesting that elevated sTREM2 may carry a much different interpretation in carriers vs. non-carriers of this allele. When evaluating the risk variant (rs6591561) across datasets, we did not observe a statistically significant interaction against any outcome in VMAP and observed opposing directions of associations in ADNI and ROS/MAP on Aß levels. Together, our results suggest that the protective effect of rs1582763 may act by decoupling the associations between sTREM2 and amyloid abundance, providing important mechanistic insight into sTREM2 changes and highlighting the need to incorporate genetic context into the analysis of sTREM2 levels, particularly if leveraged as a clinical biomarker of disease in the future.


Subject(s)
Alzheimer Disease , Biomarkers , Membrane Glycoproteins , Receptors, Immunologic , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Aged , Male , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Female , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Aged, 80 and over , Brain/metabolism , Brain/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Genetic Predisposition to Disease
2.
J Med Imaging (Bellingham) ; 11(2): 024011, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38655188

ABSTRACT

Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI. Approach: As a baseline, we match N=358 participants from two sites to create a "silver standard" that simulates a cohort for multi-site harmonization. Across sites, we harmonize mean fractional anisotropy and mean diffusivity, calculated using participant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas. We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size imbalance between sites, and 6 levels of mean age difference between sites to quantify (i) ßAGE, the linear regression coefficient of the relationship between FA and age; (ii) Î³/f*, the ComBat-estimated site-shift; and (iii) Î´/f*, the ComBat-estimated site-scaling. We characterize the reliability of ComBat by evaluating the root mean squared error in these three metrics and examine if there is a correlation between the reliability of ComBat and a violation of assumptions. Results: ComBat remains well behaved for ßAGE when N>162 and when the mean age difference is less than 4 years. The assumptions of the ComBat model regarding the normality of residual distributions are not violated as the model becomes unstable. Conclusion: Prior to harmonization of DTI data with ComBat, the input cohort should be examined for size and covariate distributions of each site. Direct assessment of residual distributions is less informative on stability than bootstrap analysis. We caution use ComBat of in situations that do not conform to the above thresholds.

3.
Magn Reson Imaging ; 111: 113-119, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38537892

ABSTRACT

Data harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice. In this work we propose MidRISH: rather than scaling reference RISH features to target RISH features, we project both sites to a mid-space. We validate MidRISH with the following experiments: harmonizing scanner differences from 37 matched patients free of cognitive impairment, and harmonizing acquisition and study differences on 117 matched patients free of cognitive impairment. We find that MidRISH reduces bias of reference selection while preserving harmonization efficacy of LinearRISH. Users should be cautious when performing LinearRISH harmonization. To select a reference site is to choose diffusion metric effect-size. Our proposed method eliminates the bias-inducing site selection step.


Subject(s)
Algorithms , Humans , Female , Male , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Anisotropy , Aged , Middle Aged , Diffusion Tensor Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Image Interpretation, Computer-Assisted/methods
4.
Neuroinformatics ; 22(2): 193-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526701

ABSTRACT

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4 .


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Neural Networks, Computer , Bias
5.
ArXiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38344221

ABSTRACT

Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN. The sample comprises 168 age-matched, sex-matched normal subjects from two studies: the Vanderbilt Memory and Aging Project (VMAP) and the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD). First, we plotted the graph measures and used coefficient of variation (CoV) and the Mann-Whitney U test to evaluate different methods' effectiveness in removing site effects on the matrices and the derived graph measures. ComBat effectively eliminated site effects for global efficiency and modularity and outperformed the other two methods. However, all methods exhibited poor performance when harmonizing average betweenness centrality. Second, we tested whether our harmonization methods preserved correlations between age and graph measures. All methods except for CycleGAN in one direction improved correlations between age and global efficiency and between age and modularity from insignificant to significant with p-values less than 0.05.

6.
Mol Neurodegener ; 19(1): 1, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172904

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Receptor, Transforming Growth Factor-beta Type II/genetics , Genome-Wide Association Study , Microglia/pathology , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
7.
Neurobiol Aging ; 136: 1-8, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280312

ABSTRACT

Enlarged perivascular spaces (ePVS) may adversely affect cognition. Little is known about how basal ganglia ePVS interact with apolipoprotein (APOE)-ε4 status. Vanderbilt Memory and Aging Project participants (n = 326, 73 ± 7, 59% male) underwent 3 T brain MRI at baseline to assess ePVS and longitudinal neuropsychological assessments. The interaction between ePVS volume and APOE-ε4 carrier status was related to baseline outcomes using ordinary least squares regressions and longitudinal cognition using linear mixed-effects regressions. ePVS volume interacted with APOE-ε4 status on cross-sectional naming performance (ß = -0.002, p = 0.002), and executive function excluding outliers (ß = 0.001, p = 0.009). There were no significant longitudinal interactions (p-values>0.10) except for Coding excluding outliers (ß = 0.002, p = 0.05). While cross-sectional models stratified by APOE-ε4 status indicated greater ePVS related to worse cognition mostly in APOE-ε4 carriers, longitudinal models stratified by APOE-ε4 status showed greater ePVS volume related to worse cognition among APOE-ε4 non-carriers only. Results indicated that greater ePVS volume interacts with APOE-ε4 status on cognition cross-sectionally. Longitudinally, the association of greater ePVS volume and worse cognition appears stronger in APOE-ε4 non-carriers, possibly due to the deleterious effects of APOE-ε4 on cognition across the lifespan.


Subject(s)
Apolipoprotein E4 , Cognition , Aged , Female , Humans , Male , Apolipoprotein E4/genetics , Cross-Sectional Studies , Genotype , Neuropsychological Tests , Aged, 80 and over
8.
Hypertension ; 81(1): 34-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37732479

ABSTRACT

Dementia affects almost 50 million adults worldwide, and remains a major cause of death and disability. Hypertension is a leading risk factor for dementia, including Alzheimer disease and Alzheimer disease-related dementias. Although this association is well-established, the mechanisms underlying hypertension-induced cognitive decline remain poorly understood. By exploring the mechanisms mediating the detrimental effects of hypertension on the brain, studies have aimed to provide therapeutic insights and strategies on how to protect the brain from the effects of blood pressure elevation. In this review, we focus on the basic mechanisms contributing to the cerebrovascular adaptions to elevated blood pressure and hypertension-induced microvascular injury. We also assess the cellular mechanisms of neurovascular unit dysfunction, focusing on the premise that cognitive impairment ensues when the dynamic metabolic demands of neurons are not met due to neurovascular uncoupling, and summarize cognitive deficits across various rodent models of hypertension as a resource for investigators. Despite significant advances in antihypertensive therapy, hypertension remains a critical risk factor for cognitive decline, and several questions remain about the development and progression of hypertension-induced cognitive impairment.


Subject(s)
Alzheimer Disease , Brain Injuries , Cognitive Dysfunction , Hypertension , Humans , Cognitive Dysfunction/etiology , Brain/metabolism
9.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984853

ABSTRACT

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Subject(s)
Alzheimer Disease , Cognitive Aging , Humans , Male , Female , Genome-Wide Association Study , Alzheimer Disease/genetics , Cognition , Sex Characteristics
10.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985223

ABSTRACT

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , Endophenotypes , Genetic Predisposition to Disease/genetics , Cognition , Memory Disorders/genetics , Polymorphism, Single Nucleotide/genetics
11.
ArXiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-37986731

ABSTRACT

Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction. Although early studies have sought to harness DTI's advantages for age estimation, there is no evidence that the success of this prediction is owed to the unique microstructural and diffusivity features that DTI provides, rather than the macrostructural features that are also available in DTI data. Therefore, we seek to develop white-matter-specific age estimation to capture deviations from normal white matter aging. Specifically, we deliberately disregard the macrostructural information when predicting age from DTI scalar images, using two distinct methods. The first method relies on extracting only microstructural features from regions of interest (ROIs). The second applies 3D residual neural networks (ResNets) to learn features directly from the images, which are non-linearly registered and warped to a template to minimize macrostructural variations. When tested on unseen data, the first method yields mean absolute error (MAE) of 6.11 ± 0.19 years for cognitively normal participants and MAE of 6.62 ± 0.30 years for cognitively impaired participants, while the second method achieves MAE of 4.69 ± 0.23 years for cognitively normal participants and MAE of 4.96 ± 0.28 years for cognitively impaired participants. We find that the ResNet model captures subtler, non-macrostructural features for brain age prediction.

12.
J Neuroimaging ; 34(2): 211-216, 2024.
Article in English | MEDLINE | ID: mdl-38148283

ABSTRACT

BACKGROUND AND PURPOSE: Adverse neurological effects after cancer therapy are common, but biomarkers to diagnose, monitor, or risk stratify patients are still not validated or used clinically. An accessible imaging method, such as fluorodeoxyglucose positron emission tomography (FDG PET) of the brain, could meet this gap and serve as a biomarker for functional brain changes. We utilized FDG PET to evaluate which brain regions are most susceptible to altered glucose metabolism after chemoradiation in patients with head and neck cancer (HNCa). METHODS: Real-world FDG PET images were acquired as standard of care before and after chemoradiation for HNCa in 68 patients. Linear mixed-effects voxelwise models assessed changes after chemoradiation in cerebral glucose metabolism quantified with standardized uptake value ratio (SUVR), covarying for follow-up time and patient demographics. RESULTS: Voxelwise analysis revealed two large clusters of decreased glucose metabolism in the medial frontal and polar temporal cortices following chemoradiation, with decreases of approximately 5% SUVR after therapy. CONCLUSIONS: These findings provide evidence that standard chemoradiation for HNCa can lead to decreased neuronal glucose metabolism, contributing to literature emphasizing the vulnerability of the frontal and anterior temporal lobes, especially in HNCa, where these areas may be particularly vulnerable to indirect radiation-induced injury. FDG PET shows promise as a sensitive biomarker for assessing these changes.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms , Humans , Fluorodeoxyglucose F18/metabolism , Positron-Emission Tomography/methods , Biomarkers/metabolism , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/therapy , Glucose/metabolism
13.
Pac Symp Biocomput ; 29: 148-162, 2024.
Article in English | MEDLINE | ID: mdl-38160276

ABSTRACT

The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10-32; T1: r=0.61, p=1.45x10-26, FW+T1: r=0.77, p=6.48x10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: ß=-1.094, p=6.32x10-7; T1: ß=-1.331, p=6.52x10-7; FW+T1: ß=-1.476, p=2.53x10-10; executive function, FW: ß=-1.276, p=1.46x10-9; T1: ß=-1.337, p=2.52x10-7; FW+T1: ß=-1.850, p=3.85x10-17) and longitudinal cognition (memory, FW: ß=-0.091, p=4.62x10-11; T1: ß=-0.097, p=1.40x10-8; FW+T1: ß=-0.101, p=1.35x10-11; executive function, FW: ß=-0.125, p=1.20x10-10; T1: ß=-0.163, p=4.25x10-12; FW+T1: ß=-0.158, p=1.65x10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Artificial Intelligence , Cross-Sectional Studies , Computational Biology , Brain/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Neural Networks, Computer , Biomarkers
14.
medRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961115

ABSTRACT

Background: Subjective cognitive decline (SCD) may be an early risk factor for dementia, particularly in highly educated individuals and women. This study examined the effect of education and sex on the association between SCD and Alzheimer's disease (AD) biomarkers in non-demented older adults. Method: Vanderbilt Memory and Aging Project participants free of clinical dementia or stroke (n=156, 72±6 years, 37% mild cognitive impairment, 33% female) completed fasting lumbar puncture, SCD assessment, and Wide Range Achievement Test-III Reading subtest to assess reading level at baseline as a a proxy for educational quality. Cerebrospinal fluid (CSF) biomarkers for AD (ß-amyloid 42 (Aß42), Aß42/40 ratio, phosphorylated tau (p-tau), tau, and neurofilament light (NfL)) were analyzed in batch. Linear mixed effects models related SCD to CSF AD biomarkers and follow-up models assessed SCD x sex, SCD x reading level , and SCD x education interactions on AD biomarkers. Result: In main effect models, higher SCD was associated with lower Aß42 and Aß42/40 ratio (p-values<0.004). SCD was not associated with tau, p-tau, or NfL levels ( p- values>0.38). SCD score interacted with sex on Aß42/40 ratio ( p =0.03) but no other biomarkers ( p -values>0.10). In stratified models, higher SCD was associated with lower Aß42/40 ratio in men ( p =0.0003) but not in women ( p =0.48). SCD score interacted with education on Aß42 ( p =0.005) and Aß42/40 ratio ( p =0.001) such that higher education was associated with a stronger negative association between SCD and amyloid levels. No SCD score x reading level interaction was found (p-values> 0.51) though significant associations between SCD and amyloid markers were seen in the higher reading level group (p-values<0.004) but not the lower reading level group (p-values>0.12) when stratified by a median split in reading level. Conclusion: Among community-dwelling older adults free of clinical dementia, higher SCD was associated with greater cerebral amyloid accumulation, one of the earliest pathological AD changes. SCD appears most useful in detecting early AD-related brain changes in men and individuals with higher quantity and quality of education. SCD was not associated with CSF markers of tau pathology or neurodegeneration. These findings suggest that considering sex and education is important when assessing SCD in older adults.

15.
medRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961576

ABSTRACT

INTRODUCTION: Plasma phosphorylated tau181 (p-tau181) associations with global cognition and memory are clear, but the link between p-tau181 with other cognitive domains and subjective cognitive decline (SCD) across the clinical spectrum of Alzheimer's disease (AD) and how this association changes based on genetic and demographic factors is poorly understood. METHODS: Participants were drawn from the Alzheimer's Disease Neuroimaging Initiative and included 1185 adults aged >55 years with plasma p-tau181 and neuropsychological test data. Linear regression models related plasma p-tau181 to neuropsychological composite and SCD scores with follow-up models examining plasma p-tau181 interactions with cognitive diagnosis, APOE ε4 carrier status, age, and sex on cognitive outcomes. RESULTS: Higher plasma p-tau181 was associated with worse memory, executive functioning, and language abilities, and greater informant-reported SCD. Visuospatial abilities and self-report SCD were not associated with plasma p-tau181. Associations were generally stronger in MCI or dementia, APOE ε4 carriers, women, and younger participants. DISCUSSION: Higher levels of plasma p-tau181 are associated with worse neuropsychological test performance across multiple cognitive domains; however, these associations vary based on disease stage, genetic risk status, age, and sex.

16.
Res Sq ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014176

ABSTRACT

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4.

17.
Alzheimers Dement (Amst) ; 15(4): e12468, 2023.
Article in English | MEDLINE | ID: mdl-37780863

ABSTRACT

Introduction: It is unclear how rates of white matter microstructural decline differ between normal aging and abnormal aging. Methods: Diffusion MRI data from several well-established longitudinal cohorts of aging (Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], Vanderbilt Memory & Aging Project [VMAP]) were free-water corrected and harmonized. This dataset included 1723 participants (age at baseline: 72.8 ± 8.87 years, 49.5% male) and 4605 imaging sessions (follow-up time: 2.97 ± 2.09 years, follow-up range: 1-13 years, mean number of visits: 4.42 ± 1.98). Differences in white matter microstructural decline in normal and abnormal agers was assessed. Results: While we found a global decline in white matter in normal/abnormal aging, we found that several white matter tracts (e.g., cingulum bundle) were vulnerable to abnormal aging. Conclusions: There is a prevalent role of white matter microstructural decline in aging, and future large-scale studies in this area may further refine our understanding of the underlying neurodegenerative processes. HIGHLIGHTS: Longitudinal data were free-water corrected and harmonized.Global effects of white matter decline were seen in normal and abnormal aging.The free-water metric was most vulnerable to abnormal aging.Cingulum free-water was the most vulnerable to abnormal aging.

18.
bioRxiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37645837

ABSTRACT

The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62×10-32; T1: r=0.61, p=1.45×10-26, FW+T1: r=0.77, p=6.48×10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: ß=-1.094, p=6.32×10-7; T1: ß=-1.331, p=6.52×10-7; FW+T1: ß=-1.476, p=2.53×10-10; executive function, FW: ß=-1.276, p=1.46×10-9; T1: ß=-1.337, p=2.52×10-7; FW+T1: ß=-1.850, p=3.85×10-17) and longitudinal cognition (memory, FW: ß=-0.091, p=4.62×10-11; T1: ß=-0.097, p=1.40×10-8; FW+T1: ß=-0.101, p=1.35×10-11; executive function, FW: ß=-0.125, p=1.20×10-10; T1: ß=-0.163, p=4.25×10-12; FW+T1: ß=-0.158, p=1.65×10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.

19.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645973

ABSTRACT

Objective: Data harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice. In this work we propose MidRISH: rather than scaling reference RISH features to target RISH features, we project both sites to a mid-space. Methods: We validate MidRISH with the following experiments: harmonizing scanner differences from 37 matched patients free of cognitive impairment, and harmonizing acquisition and study differences on 117 matched patients free of cognitive impairment. Conclusion: MidRISH reduces bias of reference selection while preserving harmonization efficacy of LinearRISH. Significance: Users should be cautious when performing LinearRISH harmonization. To select a reference site is to choose diffusion metric effect-size. Our proposed method eliminates the bias-inducing site selection step.

20.
JAMA Neurol ; 80(9): 929-939, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37459083

ABSTRACT

Importance: Sex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele. Objective: To investigate whether sex and race modify APOE ε4 and ε2 associations with cognition. Design, Setting, and Participants: This genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022. Main Outcomes and Measures: Harmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons. Results: Of 32 427 participants who met inclusion criteria, there were 19 007 females (59%), 4453 Black individuals (14%), and 27 974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12 538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (ß = -0.071, SE = 0.014; P = 9.6 × 10-7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (ß = -0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals. Conclusions and Relevance: In this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Aged , Female , Humans , Male , Alleles , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cognition , Executive Function , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...