Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Sci Total Environ ; 912: 169441, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38123089

ABSTRACT

The water industry worldwide experiences numerous sewer blockages each year, partially attributed to the accumulation of fat, oil and grease (FOG). Managing this issue involves various strategies, including the requirement for installation of grease interceptors (GIs) installation. However, the claimed efficacy of commercial GIs of eliminating 99 % of FOG has been questioned for many years because FOG deposit formation occurs despite food service establishments (FSEs) using GIs, therefore detailed understanding of FOG wastewater compositions and its removal by GIs is required. This study provides an insight into the key FOG components such as FOG particle size, metals and fatty acid (FA) profile in GI influent and effluent, and within the GI, at three different FSEs. Analysis of FAs identified substantial proportions of extra-long-chain FAs in the effluents, including arachidic (C20:0), behenic (C22:0), mead (C20:3), lignoceric (C24:0), and nervonic (C24:1) acids. In contrast, the household kitchen released palmitic (C16:0), oleic (C18:1) and linoleic (C18:2) acids. It was further observed that scums effectively remove the larger FOG particles, leaving only 10 % below 75.4 µm. Notably, FSEs which employed automatic dishwashers produced up to 80.4 % of particles ≤45 µm, whereas FSEs and household kitchen which used handwash sinks generated only 36.9 % and 26.3 % of particles ≤45 µm, respectively. This study demonstrated that the commercial GIs do not remove FOG entirely but clearly demonstrated that they discharge high concentrations of FOG with extra-long FFAs which were attributed to the occurrence of microbial activity and hydrolysis of triglycerides within the GI, potentially contributing to FOG deposition.


Subject(s)
Fats , Food Services , Macrolides , Sewage , Hydrocarbons/analysis
2.
Sci Total Environ ; 887: 163982, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37160179

ABSTRACT

Coagulant dosing to achieve low phosphorus concentrations in wastewater effluents may favour the removal of trace organics such as pharmaceuticals, plasticisers and flame retardants. Nevertheless, the behaviour of trace organics in coagulation processes is currently poorly understood because of the complex interactions between these compounds, the coagulants and dissolved organic matter (DOM). This study assessed the coagulation removal from synthetic secondary effluent of twenty-four compounds including ten PFAS and four brominated flame retardants. Testing involved two coagulants (alum, ferric chloride) and five DOM surrogates (resorcinol, benzoic acid, citric acid, tannic acid, humic acid); DOM surrogates had assorted molecular weights, structures, charges, and hydrophobicity. With coagulant doses of 14 mg Fe/L and 4 mg Al/L, ten trace organics were removed by >30 % in the presence of at least one DOM surrogate. Humic acid effected the highest removals owing to complexation of trace organics and subsequent co-removal by adsorption or sweep floc. For instance, removal extents for three brominated diphenyl ethers were 60 to 75 % with Al and 50 to 88 % with Fe (initial concentration 0.4 to 0.8 ng/L); PFTDA, a long-chain PFAS, was removed by 87 and 91 % with Fe in the presence of tannic or humic acid, respectively (initial concentration 0.03 µg/L). The varying coagulation performance of different treatment works in terms of trace substance removal can be explained because of the site-specific DOM characteristics. Addition of humic acids as complexing agents has the potential to improve the removal of hydrophobic trace substances, including some long-chain PFAS and brominated flame retardants.

3.
Water Res ; 217: 118420, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35468557

ABSTRACT

A pilot scale chlorine contact tank (CCT) with flexible baffling was installed at an operational water treatment plant (WTP), taking a direct feed from the outlet of the rapid gravity filters (RGF). For the first time, disinfection efficacy was established by direct microbial monitoring in a continuous reactor using flow cytometry (FCM). Disinfection variables of dose, time, and hydraulic efficiency (short circuiting and dispersion) were explored following characterisation of the reactor's residence time distributions (RTD) by tracer testing. FCM enabled distinction to be made between changes in disinfection reactor design where standard culture-based methods could not. The product of chlorine concentration (C) and residence time (t) correlated well with inactivation of microbes, organisms, with the highest cell reductions (N/N0) reaching <0.025 at Ctx¯ of 20 mg.min/L and above. The influence of reactor geometry on disinfection was best shown from the Ct10. This identified that the initial level of microbial inactivation was higher in unbaffled reactors for low Ct10 values, although the highest levels of inactivation of 0.015 could only be achieved in the baffled reactors, because these conditions enabled the highest Ct10 values to be achieved. Increased levels of disinfection were closely associated with increased formation of the trihalomethane disinfection by-products. The results highlight the importance of well-designed and operated CCT. The improved resolution afforded by FCM provides a tool that can dynamically quantify disinfection processes, enabling options for much better process control.


Subject(s)
Chlorine , Water Purification , Disinfection/methods , Flow Cytometry , Water Purification/methods
4.
Sci Total Environ ; 815: 152626, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35016936

ABSTRACT

Removal of pesticides from agricultural run-off close to the point of application has the potential to prevent or reduce the pollution of water sources used for drinking. This research considered the novel application of activated carbon (AC) fabric as a sorbent material for removal of pesticides from field run-off. AC fabric was tested for the removal of the molluscicide pesticide metaldehyde under a range of flow rates at both laboratory and pilot scale. Metaldehyde at an initial concentration of 10 µg/L was removed effectively from deionised (DI) water and real source water by the AC cloth under all conditions tested, reaching removal of 1375 and 876 µg/g (equivalent to 169 and 264 mg/m2), respectively. The adsorption followed pseudo-second order kinetics (k2 of 29.9 and 34.8 g/µg min for the AC fabric and GAC), providing rapid removal of metaldehyde within the first 5 min of contact. In single pass and flow through conditions, stabilised removal of 46% metaldehyde was achieved by the AC fabric bundle for treatment of 700 L of real water in a pilot scale flume. This equated to removal of 454 µg/m2, although significantly more removal would be expected over longer duration testing given the stabilised removal and the equilibrium capacity of the fabric seen during the batch isotherm testing. The work provides evidence to show that AC fabric could be used in the catchment to reduce peak loads of pesticides in sources used for drinking water.


Subject(s)
Drinking Water , Pesticides , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Kinetics , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 783: 146834, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33862397

ABSTRACT

This study was completed to understand the resilience of an ion exchange (IEX) process for its ability to remove variable ammonium (NH4+-N) loads) and to prove its environmental benefits through a life cycle assessment (LCA). The tertiary 10 m3/day demonstration scale IEX was fed with variable NH4+-N concentrations (<0.006-26 mg NH4+-N /L) naturally found in municipal wastewater. Zeolite-N was used as ion exchange media and regeneration was completed with 10% potassium chloride (KCl). The influent NH4+-N concentration impacted the ion exchange capacity, which ranged from 0.9-17.7 mg NH4+-N/g media. When the influent concentration was <2.5 mg NH4+-N/L, the Zeolite-N released NH4+-N (up to 12%). However, the exchange increased up to 62% when the influent NH4+-N load peaked, confirming the resilience of the process. A 94% regeneration efficiency was obtained with fresh regenerant, however, with the increase of the mass of NH4+-N on the media, the regeneration efficiency decreased. An optimisation of the volume of brine and regeneration contact time is suggested. To further measure the benefits of the IEX process, an LCA was conducted, for a 10,000 population equivalent reference scenario, and compared with traditional nitrification-denitrification WWTP. The LCA revealed that IEX with regenerant re-use and NH4+-N recovery through a membrane stripping process resulted in reductions of: 25% cumulative energy demand; 66% global warming potential and 62% marine eutrophication potential, when compared to traditional WWTP. This work demonstrated that the IEX process is an efficient and an environmentally benign technology that can be widely applied in WWTPs.

6.
Environ Technol ; 42(10): 1521-1530, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31560609

ABSTRACT

The use of microalgae for nutrients removal from wastewater has attracted more attention in recent years. More specifically, immobilized systems where algae cells are entrapped in beads in a matrix of a polysaccharide such as alginate have shown a great potential for nutrients removal from wastewater to low levels with reduced retention times and hence smaller footprint. However, a significant operational cost in the up-scaling of alginate-immobilized algae reactors will be the gelling agent alginate. To reduce expenditure of this consumable a proof-of-concept is given for an alginate recycling method using sodium citrate as a dissolving agent. Using algae beads made from virgin and recycled alginate yielded comparable removal rates for both phosphorus and nitrogen compounds from wastewater. At labscale, an alginate recovery of approximately 70% can be achieved which would result in a net operational cost reduction of about 60%.


Subject(s)
Microalgae , Waste Disposal, Fluid , Alginates , Nitrogen , Phosphorus , Wastewater
7.
Front Bioeng Biotechnol ; 8: 567695, 2020.
Article in English | MEDLINE | ID: mdl-33224930

ABSTRACT

Three upflow anaerobic sludge blanket (UASB) pilot scale reactors with different configurations and inocula: flocculent biomass (F-UASB), flocculent biomass and membrane solids separation (F-AnMBR) and granular biomass and membrane solids separation (G-AnMBR) were operated to compare start-up, solids hydrolysis and effluent quality. The parallel operation of UASBs with these different configurations at low temperatures (9.7 ± 2.4°C) and the low COD content (sCOD 54.1 ± 10.3 mg/L and pCOD 84.1 ± 48.5 mg/L), was novel and not previously reported. A quick start-up was observed for the three reactors and could be attributed to the previous acclimation of the seed sludge to the settled wastewater and to low temperatures. The results obtained for the first 45 days of operation showed that solids management was critical to reach a high effluent quality. Overall, the F-AnMBR showed higher rates of hydrolysis per solid removed (38%) among the three different UASB configurations tested. Flocculent biomass promoted slightly higher hydrolysis than granular biomass. The effluent quality obtained in the F-AnMBR was 38.0 ± 5.9 mg pCOD/L, 0.4 ± 0.9 mg sCOD/L, 9.9 ± 1.3 mg BOD5/L and <1 mg TSS/L. The microbial diversity of the biomass was also assessed. Bacteroidales and Clostridiales were the major bacterial fermenter orders detected and a relative high abundance of syntrophic bacteria was also detected. Additionally, an elevated abundance of sulfate reducing bacteria (SRB) was also identified and was attributed to the low COD/SO4 2- ratio of the wastewater (0.5). Also, the coexistence of acetoclastic and hydrogenotrophic methanogenesis was suggested. Overall this study demonstrates the suitability of UASB reactors coupled with membrane can achieve a high effluent quality when treating municipal wastewater under psychrophilic temperatures with F-AnMBR promoting slightly higher hydrolysis rates.

8.
Sci Total Environ ; 749: 141413, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-32814204

ABSTRACT

Accounting for up to three quarters of the wastewater volume resulting from domestic activities but containing only a third of its organic content, greywater is seen as an alternative water source for non-potable reuse. This unique study explores the question whether consumers' product selection could affect the treatability and reuse of bathroom greywater. Fifty five personal care and household products (PCHP) were analysed for their effects on a range of water quality parameters including their aquatic and soil toxicity using Microtox® and MicroResp™. The organic content of these PCHPs varied considerably, not only from one category to another (0.2 gTOC.L-1 for hair conditioners to 2.7 gTOC.L-1 for toothpastes), but also within each category (0.1 gTOC.L-1 to 3.6 gTOC.L-1 amongst the shampoos). As expected, the PCHPs' macronutrient content was low, suggesting some limitation towards biological treatment of bathroom greywater. Regarding the impact of product selection on toxicity towards aquatic and soil microorganisms, the results revealed a higher sensitivity of Vibrio fischeri to the individual PCHPs than the MicroResp™ soil microorganisms. In the latter case, 75% of the products caused a stimulation response from the microorganisms although some decreases in basal respiration were observed for specific PCHPs within product categories. However, based solely on MicroResp™, the short-term discharge of treated bathroom greywater, regardless of consumer product selection, is unlikely to have a negative impact on soil microbial activity. Overall, the work has demonstrated the importance of consumer choice on the pollution load and treatability of greywater. However, no clear link between greywater characteristics and factors that normally determine consumer product selection (branding, type) were identified. This means it is not currently possible for consumers to actively manage the issue through choice such that process designers and technology developers must ensure technologies are sufficiently robust to manage the potential variations that could occur.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Soil , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Sci Rep ; 10(1): 12426, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709876

ABSTRACT

The application of ion exchange process for ammonium (NH4+-N) removal from wastewater is limited due to the lack of suppliers of engineered zeolites which present high ammonium exchange capacity (AEC) and mechanical strength. This study focuses on the preparation and evaluation of synthetic zeolites (Zeolite1-6) by measuring AEC and resistance to attrition and compression, against natural (clinoptilolite) and engineered zeolite (reference, Zeolite-N). At high NH4+-N concentrations, Zeolite6 and Zeolite2 showed capacities of 4.7 and 4.5 meq NH4+-N/g media, respectively. In secondary effluent wastewater (initial NH4+-N of 0.7 meq NH4+-N/L), Zeolite1, 2 and 6 showed an AEC of 0.05 meq NH4+-N/g media, similar to Zeolite-N (0.06 meq NH4+-N /g media). Among the synthetic zeolites, Zeolite3 and 6 showed higher resistance to attrition (disintegration rate = 2.7, 4.1 NTU/h, respectively) when compared with Zeolite-N (disintegration rate = 13.2 NTU/h). Zeolite4 and 6 showed higher resistance to compression (11 N and 6 N, respectively). Due its properties, Zeolite6 was further tested in an ion exchange demonstration scale plant treating secondary effluent from a municipal wastewater treatment plant. However, Zeolite6 disintegrated after 2 months of operation, whilst Zeolite-N remained stable for 1.5 year. This highlighted the importance of the zeolite's mechanical strength for successful application. In particular, future work should focus on the optimization of the zeolite production process (temperature, time and dimension of the kiln during calcination) to obtain an engineered zeolite with a spherical shape thus reducing eventual sharp edges which can affect mechanical strength.

10.
Water Res ; 184: 116084, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32668301

ABSTRACT

Metaldehyde removal was delivered to below the 0.1 µg L-1 regulatory concentration in a laboratory scale continuous upflow fluidised sand bioreactor that had undergone acclimation through selective enrichment for metaldehyde degradation. This is the first reported case of successful continuous flow biological treatment of metaldehyde from real drinking water sources treating environmentally realistic metaldehyde concentrations. The impact of the acclimation process was impermanent, with the duration of effective treatment directly related to the elevated concentration of metaldehyde used during the enrichment process. The efficacy of the approach was demonstrated in continuous flow columns at both laboratory and pilot scale enabling degradation rates of between 0.1 and 0.2 mg L-1 h-1. Future work needs to focus on optimisation of the sand bioreactor and the acclimation process to ensure viability and feasibility of the approach at full scale.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Acclimatization , Acetaldehyde/analogs & derivatives , Bioreactors , Sand , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 728: 138415, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32348944

ABSTRACT

Daily, sewage treatment works (STWs) receive large volumes of fats, oils and greases (FOG), by-products of food preparation. To increase FOG removal at STW, conventional primary sedimentation tanks (PSTs) can be enhanced using chemical coagulant or through dissolved air flotation (DAF) techniques. This work aimed to assess the potential benefits of enhanced primary treatment for FOG removal through an energy and costs analysis. To achieve this, a five-year sampling programme was conducted monthly at 15 STWs measuring FOG concentrations in crude and settled sewage (i.e. after primary treatment). In addition, two DAF pilot systems were trialled for four months and their performance, in terms of FOG removal, was assessed and compared to that of a control primary clarifier. Across the 15 STWs, influent FOG concentrations were found at 57 ±â€¯11 mg.L-1. Chemical coagulants dosed prior to PSTs increased FOG removal rates on average to 71% whilst traditional sedimentation only achieved 50% removal. Effluent FOG concentrations were found between 12-22 mg.L-1 and 19-36 mg.L-1 respectively. By contrast, DAF achieved FOG effluent concentrations on average at 10 ±â€¯4 mg.L-1 corresponding to 74% removal from a relatively low influent concentration of 40 ±â€¯30 mg.L-1. Thus, enhanced primary treatments have the potential to reduce organic load to secondary treatment and increase energy generation through anaerobic digestion. The overall net energy balance was estimated at 2269 MWh.year-1 for the DAF compared to 3445 MWh.year-1 for the chemically-enhanced PST making it a less financially attractive alternative. Yet, in the case where the works require upgrading to accommodate flow or load increases, DAF appeared as a sensible option over sedimentation offering significantly lower capital costs and footprint. In relation to FOG management, upgrading all STWs is not realistic and will require understanding where the benefits would be the highest.


Subject(s)
Sewage , Wastewater , Fats , Hydrocarbons , Plant Oils
12.
Waste Manag ; 103: 399-406, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31945709

ABSTRACT

Several of the waste materials that have a negative impact on the sewer system are produced by fats, oils and greases (FOG) discharged from commercial and domestic kitchens. These materials accumulate at different points in the sewer catchment, from kitchens to pumping stations, sewers and sewage treatment works (STWs), and comprise oily wastewater, floating agglomerates and hard deposits. Despite their detrimental effects, these waste materials have a high calorific content and are an ideal feedstock for energy recovery processes. So far, the overall volume of each type of waste and their physical-chemical properties in relation to their collection point are unknown. However, from a management point of view, knowledge on each feedstock quality and volumes is necessary to develop an economic viable solution for their collection and for energy recovery purposes. In this study, FOG wastes collected from households, food service establishments (FSEs), sewage pumping stations, sewers and STWs, were compared to sewage sludge in terms of organic contents and energy potentials. As expected, FOG recovered at source (households and FSEs) were 'cleaner' and had a higher energy content. Once mixed with wastewater the materials changed in composition and lost some of their energy per unit mass. Our results showed that around 94,730 tonnes.year-1 of these materials could be recovered from the Thames Water Utilities' catchment, one of the most populated in the UK. These materials could produce up to 222 GWh.year-1 as biogas, close to double of what is produced with sewage sludge digestion and around 19% of the company energy needs. Finally, even with over six million households in the catchment, the results showed that most of the FOG waste was produced by FSEs (over 48,000 premises) with an estimated average of 79,810 tonnes.year-1 compared to 14,920 tonnes.year-1 from private households. This is an important outcome as recovery from FSEs will be cheaper and easier if the company decides to implement a collection system for energy recovery.


Subject(s)
Fats , Sewage , Biofuels , Hydrocarbons , Waste Disposal, Fluid , Wastewater
13.
Water Res ; 170: 115346, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31801097

ABSTRACT

Ballasted flocculation is an efficient high-rate sedimentation process getting more attention as an advanced P removal technology for levels below 0.1 mg/L. The process is well-known yet only very few studies have investigated the interactions, within the matrix of wastewater, of coagulant, polymer and ballast, especially when it comes to polymer doses and types which are, in the industry, rather based on recommendations than scientific evidence. In this work, the impact of anionic and cationic polymers has been investigated on P removal and floc properties. Anionic polymers showed to be superior to cationic ones when it comes to P removal and doses even as low as 0.01 mg/L yield better results than coagulant alone. There appears to be a "best-case" floc size with which very good P removal (>90%) can be achieved and flocs of sufficient strength can be generated.


Subject(s)
Wastewater , Water Purification , Anions , Cations , Flocculation , Polymers
14.
Environ Sci Technol ; 53(16): 9734-9743, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31329424

ABSTRACT

Ion exchange (IEX) can successfully remove natural organic matter (NOM) from surface water. However, the removal mechanism is not well understood due to the complexity and variability of NOM in real source waters as well as the influence of multiple parameters on the removal behavior. For example, this includes the physicochemical properties of the NOM and IEX resin, and the presence of competing anions. Model compounds with a range of physical and chemical characteristics were therefore used to determine the mechanisms of NOM removal by IEX resins. Fifteen model compounds were selected to evaluate the influence of hydrophobicity, size, and charge of organic molecules on the removal by ion exchange, both individually and in mixtures. Three different resins, comprising polystyrene and polyacrylic resin of macroporous and gellular structure, showed that charge density (CD) was the most important characteristic that controlled the removal, with CD of >5 mequiv mgDOC-1 resulting in high removal (≥89%). Size exclusion of compounds with high MW (≥8 kDa) was evident. The hydrophobicity of the resin and model compound was particularly important for removal of neutral molecules such as resorcinol, which was best removed by the more hydrophobic polystyrene resin. Relationships were identified that provided explanations of the interactions observed between NOM and IEX resin in real waters.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anions , Ion Exchange , Ion Exchange Resins , Organic Chemicals
15.
Water Sci Technol ; 79(11): 2126-2134, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31318350

ABSTRACT

This study examined the dynamics of iron (Fe) and phosphorus (P) transformations from the surface sludge accumulated in tertiary horizontal flow (HF) treatment wetlands (TW) chemically dosed for P removal. Site surveys showed P was stored in HF TW with and without artificial aeration on average, with instances of P release in the non-aerated site. Controlled experiments revealed storing TW surface sludge for over 24 hours resulted in limited oxygen and nitrate concentrations, resulting in both P and Fe release. The rate of P release increased with increasing water-sludge P concentration gradients, and the reaction could take as little as 10 minutes. Convection had no impact on P transformation rates. The findings suggest mitigation strategies could include the manipulation of the biogeochemical environment by managing oxygen and nitrate concentrations within the wetlands. A better understanding of links between Fe, P, and nitrate is needed to test proactive mitigation strategies for small wastewater treatment plants.


Subject(s)
Phosphorus , Waste Disposal, Fluid , Wetlands , Iron , Sewage , Wastewater
16.
Environ Int ; 130: 104893, 2019 09.
Article in English | MEDLINE | ID: mdl-31226555

ABSTRACT

Flow cytometry (FCM) and the ability to measure both total and intact cell populations through DNA staining methodologies has rapidly gained attention and consideration across the water sector in the past decade. In this study, water quality monitoring was undertaken over three years across 213 drinking water treatment works (WTW) in the Scottish Water region (Total n = 39,340). Samples subject to routine regulatory microbial analysis using culture-based methods were also analysed using FCM. In addition to final treated water, the bacterial content in raw water was measured over a one-year period. Three WTW were studied in further detail using on-site inter-stage sampling and analysis with FCM. It was demonstrated that there was no clear link between FCM data and the coliform samples taken for regulatory monitoring. The disinfectant Ct value (Ct = mg·min/L) was the driving factor in determining final water cell viability and the proportion of intact cells (intact/total cells) and the frequency of coliform detections in the water leaving the WTW. However, the free chlorine residual, without consideration of treatment time, was shown to have little impact on coliform detections or cell counts. Amongst the three treatment trains monitored in detail, the membrane filtration WTW showed the greatest log removal and robustness in terms of final water intact cell counts. Flow cytometry was shown to provide insights into the bacteriological quality of water that adds significant value over and above that provided by traditional bacterial monitoring.


Subject(s)
Cell Culture Techniques/methods , Drinking Water/microbiology , Flow Cytometry/methods , Water Microbiology/standards , Water Purification/standards , Bacteria/isolation & purification , Environmental Monitoring/methods , Environmental Monitoring/standards
17.
Sci Total Environ ; 685: 410-418, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176226

ABSTRACT

Polar, low molecular weight pesticides such as metaldehyde are challenging and costly to remove from drinking water using conventional treatment methods. Although biological treatments can be effective at treating micropollutants, through biodegradation and sorption processes, only some operational biofilters have shown the ability to remove metaldehyde. As sorption plays a minor role for such polar organic micropollutants, biodegradation is therefore likely to be the main removal pathway. In this work, the biodegradation of metaldehyde was monitored, and assessed, in an operational slow sand filter. Long-term data showed that metaldehyde degradation improved when inlet concentrations increased. A comparison of inactive and active sand batch reactors showed that metaldehyde removal happened mainly through biodegradation and that the removal rates were greater after the biofilm was acclimated through exposure to high metaldehyde concentrations. This suggested that metaldehyde removal was reliant on enrichment and that the process could be engineered to decrease treatment times (from days to hours). Through-flow experiments using fluidised bed reactors, showed the same behaviour following metaldehyde acclimation. A 40% increase in metaldehyde removal was observed in acclimated compared with non-acclimated columns. This increase was sustained for >40 days, achieving an average of 80% removal and compliance (<0.1 µâ€¯L-1) for >20 days. An initial microbial analysis of the acclimated and non-acclimated biofilm from the same filter materials, showed that the microbial community in acclimated sand was significantly different. This work presents a novel conceptual template for a faster, chemical free, low cost, biological treatment of metaldehyde and other polar pollutants in drinking water. In addition, this is the first study to report kinetics of metaldehyde degradation in an active microbial biofilm at a WTW.


Subject(s)
Acetaldehyde/analogs & derivatives , Bioreactors , Water Pollutants, Chemical/analysis , Water Purification/methods , Acetaldehyde/analysis , Biodegradation, Environmental , Drinking Water/chemistry
18.
Chemosphere ; 224: 494-501, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30831501

ABSTRACT

Conventional sorption media are inefficient for phosphorus removal from wastewater due to preference for competing species such as sulphate, nitrate and organics. This work investigates whether the use of hybrid ion exchange resins effectively negates such concerns. Trials were conducted with a hybrid anion exchange (HAIX) media which was preloaded with different background constituents and operated over multiple regeneration cycles to ascertain the likely impacts. The work revealed that whilst the impact of the other constituents was seen in regards to direct competition, the major impact was on reduction of the rate of intraparticle mass transfer through sorption of the constituents onto the base resin thereby reducing the Donnan membrane effect. Comparison of the impact of the background water constituents on the individual components (hybrid resin, base resin, nanoparticles) revealed the importance of the nanoparticle whereby they effectively transform the ion exchange media into a mono component absorber for phosphorus that enables sustained removal even in complex wastewaters.


Subject(s)
Ion Exchange Resins/chemistry , Phosphorus/isolation & purification , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water Purification
19.
Water Sci Technol ; 80(12): 2344-2351, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32245926

ABSTRACT

Heat recovery from combined sewers has a significant potential for practical renewable energy provision as sources of heat demand and sewer pipes are spread across urban areas. Sewers are continuously recharged with relatively hot wastewater, as well as interacting with heat sources from surrounding air and soil. However, the potential effects of modifying sewage temperature on in-sewer processes have received little attention. The deposition of fats, oils and greases (FOGs) and hydrogen sulphide formation are biochemical processes and are thus influenced by temperature. This paper utilises a case study approach to simulate anticipated temperature reductions in a sewer network due to heat recovery. A laboratory investigation into the formation of FOG deposits at temperatures varying between 5 °C and 20 °C provided mixed results, with only a weak temperature influence, highlighting the need for more research to fully understand the influence of the wastewater composition as well as temperature on FOG deposit formation. A separate modelling investigation into the formation of hydrogen sulphide when inflow temperature is varied between 5 °C and 20 °C showed considerable reductions in hydrogen sulphide formation. Hence, heat extraction from sewers could be a promising method for managing some in-sewer processes, combined with traditional methods such as chemical dosing.


Subject(s)
Hot Temperature , Sewage , Fats , Oils , Wastewater
20.
Sci Total Environ ; 624: 638-647, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29272833

ABSTRACT

Turbidity in water can be caused by a range of different turbidity causing materials (TCM). Here the characteristics and attachment of bacteria to TCMs was assessed and the resultant impact on UV disinfection determined. TCMs represent potential vehicles for bacterial penetration of water treatment barriers, contamination of potable supplies and impact on subsequent human health. The TCMs under investigation were representative of those that may be present in surface and ground waters, both from the source and formed in the treatment process. The TCMs were chalk, Fe (III) hydroxide precipitate, kaolin clay, manganese dioxide and humic acids, at different turbidity levels representative of source waters (0, 0.1, 0.2, 0.4, 1, 2, and 5 NTU). Escherichia coli and Enterococcus faecalis attachment followed the order of Fe(III)>chalk, with little to no attachment seen for MnO2, humic acids and clay. The attachment was postulated to be due to chalk and Fe(III) particles having a more neutral surface charge resulting in elevated aggregation with bacteria compared to other TCMs. The humic acids and Fe(III) were the TCMs which influenced inactivation of E. coli and E. faecalis due to decreasing UV transmittance (UVT) with increasing TCM concentration. The presence of the Fe(III) TCM at 0.2 NTU resulted in the poorest E. coli inactivation, with 2.5 log10 reduction at UV dose of 10mJcm-2 (kd of -0.23cm2mJ-1) compared to a 3.9 log10 reduction in the absence of TCMs. E. faecalis had a greater resistance to UV irradiation than E. coli for all TCMs. Effective disinfection of drinking water is a priority for ensuring high public health standards. Uniform regulations for turbidity levels for waters pre-disinfection by UV light set by regulators may not always be appropriate and efficacy is dependent on the type, as well as the amount, of turbidity present in the water.


Subject(s)
Disinfection/methods , Ultraviolet Rays , Water Microbiology , Water Pollutants, Chemical/analysis , Enterococcus faecalis , Escherichia coli , Ferric Compounds/analysis , Humic Substances/analysis , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...