Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 46(3): 3135-3147, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38200357

ABSTRACT

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.


Subject(s)
Brain , Dual-Specificity Phosphatases , Middle Cerebral Artery , Animals , Rats , Aging , Brain/blood supply , Cognition , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Middle Cerebral Artery/metabolism
2.
bioRxiv ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106132

ABSTRACT

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.

3.
Neurotrauma Rep ; 2(1): 270-284, 2021.
Article in English | MEDLINE | ID: mdl-34223557

ABSTRACT

Nearly all persons with spinal cord injury (SCI) will develop osteoporosis following injury, and further, up to 50% of all persons with SCI will sustain a fracture during their lives. The unique mechanisms driving osteoporosis following SCI remain unknown. The cannabinoid system modulation of bone metabolism through cannabinoid 1/2 (CB1/2) has been of increasing interest for the preservation of bone mass and density in models of osteoporosis. Using a thoracic vertebral level 8 (T8) complete transection in a mouse model, we performed daily treatment with a selective CB2 receptor agonist, HU308, compared with SCI-vehicle-treated and naïve control animals either immediately after injury for 40 days, or in a delayed paradigm, following 3 months after injury. The goal was to prevent or potentially reverse SCI-induced osteoporosis. In the acute phase, administration of the CB2 agonist was not able to preserve the rapid loss of cancellous bone. In the delayed-treatment paradigm, in cortical bone, HU308 increased cortical-area to total-area ratio and periosteal perimeter in the femur, and improved bone density in the distal femur and proximal tibia. Further, we report changes to the metaphyseal periosteum with increased presence of adipocyte and fat mass in the periosteum of SCI animals, which was not present in naïve animals. The layer of fat increased markedly in HU308-treated animals compared with SCI-vehicle-treated animals. Overall, these data show that CB2 agonism targets a number of cell types that can influence overall bone quality.

4.
J Pharmacol Exp Ther ; 377(1): 189-198, 2021 04.
Article in English | MEDLINE | ID: mdl-33414130

ABSTRACT

Previous studies identified a region on chromosome 1 associated with NG-nitro-L-arginine methyl ester (L-NAME) hypertension-induced renal disease in fawn-hooded hypertensive (FHH) rats. This region contains a mutant γ-adducin (Add3) gene that impairs renal blood flow (RBF) autoregulation, but its contribution to renal injury is unknown. The present study evaluated the hypothesis that knockout (KO) of Add3 impairs the renal vasoconstrictor response to the blockade of nitric oxide synthase and enhances hypertension-induced renal injury after chronic administration of L-NAME plus a high-salt diet. The acute hemodynamic effect of L-NAME and its chronic effects on hypertension and renal injury were compared in FHH 1Brown Norway (FHH 1BN) congenic rats (WT) expressing wild-type Add3 gene versus FHH 1BN Add3 KO rats. RBF was well autoregulated in WT rats but impaired in Add3 KO rats. Acute administration of L-NAME (10 mg/kg) raised mean arterial pressure (MAP) similarly in both strains, but RBF and glomerular filtration rate (GFR) fell by 38% in WT versus 15% in Add3 KO rats. MAP increased similarly in both strains after chronic administration of L-NAME and a high-salt diet; however, proteinuria and renal injury were greater in Add3 KO rats than in WT rats. Surprisingly, RBF, GFR, and glomerular capillary pressure were 41%, 82%, and 13% higher in L-NAME-treated Add3 KO rats than in WT rats. Hypertensive Add3 KO rats exhibited greater loss of podocytes and glomerular nephrin expression and increased interstitial fibrosis than in WT rats. These findings indicate that loss of ADD3 promotes L-NAME-induced renal injury by altering renal hemodynamics and enhancing the transmission of pressure to glomeruli. SIGNIFICANCE STATEMENT: A mutation in the γ-adducin (Add3) gene in fawn-hooded hypertensive rats that impairs autoregulation of renal blood flow is in a region of rat chromosome 1 homologous to a locus on human chromosome 10 associated with diabetic nephropathy. The present results indicate that loss of ADD3 enhanced NG-nitro-L-arginine methyl ester-induced hypertensive renal injury by altering the transmission of pressure to the glomerulus.


Subject(s)
Calmodulin-Binding Proteins/metabolism , Hypertension, Renal/metabolism , Renal Insufficiency, Chronic/metabolism , Animals , Blood Pressure , Calmodulin-Binding Proteins/genetics , Enzyme Inhibitors/toxicity , Gene Deletion , Glomerular Filtration Rate , Homeostasis , Hypertension, Renal/etiology , Hypertension, Renal/physiopathology , Male , NG-Nitroarginine Methyl Ester/toxicity , Podocytes/drug effects , Podocytes/metabolism , Rats , Renal Circulation , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/physiopathology , Vasoconstriction
5.
Am J Physiol Renal Physiol ; 320(1): F97-F113, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33308016

ABSTRACT

We recently reported that the enhanced susceptibility to chronic kidney disease (CKD) in the fawn-hooded hypertensive (FHH) rat is caused, at least in part, by a mutation in γ-adducin (ADD3) that attenuates renal vascular function. The present study explored whether Add3 contributes to the modulation of podocyte structure and function using FHH and FHH.Add3 transgenic rats. The expression of ADD3 on the membrane of primary podocytes isolated from FHH was reduced compared with FHH.Add3 transgenic rats. We found that F-actin nets, which are typically localized in the lamellipodia, replaced unbranched stress fibers in conditionally immortalized mouse podocytes transfected with Add3 Dicer-substrate short interfering RNA (DsiRNA) and primary podocytes isolated from FHH rats. There were increased F/G-actin ratios and expression of the Arp2/3 complexes throughout FHH podocytes in association with reduced synaptopodin and RhoA but enhanced Rac1 and CDC42 expression in the renal cortex, glomeruli, and podocytes of FHH rats. The expression of nephrin at the slit diaphragm and the levels of focal adhesion proteins integrin-α3 and integrin-ß1 were decreased in the glomeruli of FHH rats. Cell migration was enhanced and adhesion was reduced in podocytes of FHH rats as well as in immortalized mouse podocytes transfected with Add3 DsiRNA. Mean arterial pressures were similar in FHH and FHH.Add3 transgenic rats at 16 wk of age; however, FHH rats exhibited enhanced proteinuria associated with podocyte foot process effacement. These results demonstrate that reduced ADD3 function in FHH rats alters baseline podocyte pathophysiology by rearrangement of the actin cytoskeleton at the onset of proteinuria in young animals.


Subject(s)
Actin Cytoskeleton/metabolism , Calmodulin-Binding Proteins/metabolism , Hypertension/metabolism , Podocytes/metabolism , Proteinuria/metabolism , Renal Insufficiency, Chronic/metabolism , Actin Cytoskeleton/pathology , Animals , Arterial Pressure , Calmodulin-Binding Proteins/genetics , Cell Adhesion , Cell Line , Cell Movement , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Disease Progression , Focal Adhesions/metabolism , Focal Adhesions/pathology , Hypertension/genetics , Hypertension/pathology , Hypertension/physiopathology , Integrins/metabolism , Male , Mice , Monomeric GTP-Binding Proteins/metabolism , Podocytes/pathology , Proteinuria/genetics , Proteinuria/pathology , Proteinuria/physiopathology , Rats, Inbred Strains , Rats, Transgenic , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/physiopathology , Signal Transduction
6.
Am J Physiol Renal Physiol ; 319(4): F624-F635, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32830539

ABSTRACT

Recently, we reported a mutation in γ-adducin (ADD3) was associated with an impaired myogenic response of the afferent arteriole and hypertension-induced chronic kidney disease (CKD) in fawn hooded hypertensive (FHH) rats. However, the mechanisms by which altered renal blood flow (RBF) autoregulation promotes hypertension-induced renal injury remain to be determined. The present study compared the time course of changes in renal hemodynamics and the progression of CKD during the development of DOCA-salt hypertension in FHH 1BN congenic rats [wild-type (WT)] with an intact myogenic response versus FHH 1BNAdd3KO (Add3KO) rats, which have impaired myogenic response. RBF was well autoregulated in WT rats but not in Add3KO rats. Glomerular capillary pressure rose by 6 versus 14 mmHg in WT versus Add3KO rats when blood pressure increased from 100 to 150 mmHg. After 1 wk of hypertension, glomerular filtration rate increased by 38% and glomerular nephrin expression decreased by 20% in Add3KO rats. Neither were altered in WT rats. Proteinuria doubled in WT rats versus a sixfold increase in Add3KO rats. The degree of renal injury was greater in Add3KO than WT rats after 3 wk of hypertension. RBF, glomerular filtration rate, and glomerular capillary pressure were lower by 20%, 28%, and 19% in Add3KO rats than in WT rats, which was associated with glomerular matrix expansion and loss of capillary filtration area. The results indicated that impaired RBF autoregulation and eutrophic remodeling of preglomerular arterioles increase the transmission of pressure to glomeruli, which induces podocyte loss and accelerates the progression of CKD in hypertensive Add3KO rats.


Subject(s)
Blood Pressure , Glomerular Filtration Rate , Hypertension/complications , Kidney Glomerulus/blood supply , Proteinuria/etiology , Renal Circulation , Renal Insufficiency, Chronic/etiology , Animals , Arterioles/metabolism , Arterioles/physiopathology , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Desoxycorticosterone Acetate , Disease Models, Animal , Disease Progression , Homeostasis , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Male , Muscle Development , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Proteinuria/genetics , Proteinuria/metabolism , Proteinuria/physiopathology , Rats, Transgenic , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology , Sodium Chloride, Dietary , Vascular Remodeling
7.
Geroscience ; 42(5): 1387-1410, 2020 10.
Article in English | MEDLINE | ID: mdl-32696219

ABSTRACT

Diabetes mellitus (DM) is a leading risk factor for aging-related dementia; however, the underlying mechanisms are not well understood. The present study, utilizing a non-obese T2DN diabetic model, demonstrates that the myogenic response of the middle cerebral artery (MCA) and parenchymal arteriole (PA) and autoregulation of cerebral blood flow (CBF) in the surface and deep cortex were impaired at both young and old ages. The impaired CBF autoregulation was more severe in old than young DM rats, and in the deep than the surface cortex. The myogenic tone of the MCA was enhanced at perfusion pressure in the range of 40-100 mmHg in young DM rats but was reduced at 140-180 mmHg in old DM rats. No change of the myogenic tone of the PA was observed in young DM rats, whereas it was significantly reduced at 30-60 mmHg in old DM rats. Old DM rats had enhanced blood-brain barrier (BBB) leakage and neurodegeneration, reduced vascular density, tight junction, and pericyte coverage on cerebral capillaries in the CA3 region in the hippocampus. Additionally, DM rats displayed impaired functional hyperemia and spatial learning and short- and long-term memory at both young and old ages. Old DM rats had impaired non-spatial short-term memory. These results revealed that impaired CBF autoregulation and enhanced BBB leakage plays an essential role in the pathogenesis of age- and diabetes-related dementia. These findings will lay the foundations for the discovery of anti-diabetic therapies targeting restoring CBF autoregulation to prevent the onset and progression of dementia in elderly DM.


Subject(s)
Diabetes Mellitus, Experimental , Aging , Animals , Cerebrovascular Circulation , Cognition , Diabetes Mellitus, Experimental/complications , Homeostasis , Rats
8.
Am J Physiol Heart Circ Physiol ; 318(5): H1219-H1232, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32216612

ABSTRACT

Epidemiological studies demonstrate that there are sex differences in the incidence, prevalence, and outcomes of cerebrovascular disease (CVD). The present study compared the structure and composition of the middle cerebral artery (MCA), neurovascular coupling, and cerebrovascular function and cognition in young Sprague-Dawley (SD) rats. Wall thickness and the inner diameter of the MCA were smaller in females than males. Female MCA exhibited less vascular smooth muscle cells (VSMCs), diminished contractile capability, and more collagen in the media, and a thicker internal elastic lamina with fewer fenestrae compared with males. Female MCA had elevated myogenic tone, lower distensibility, and higher wall stress. The stress/strain curves shifted to the left in female vessels compared with males. The MCA of females failed to constrict compared with a decrease of 15.5 ± 1.9% in males when perfusion pressure was increased from 40 to 180 mmHg. Cerebral blood flow (CBF) rose by 57.4 ± 4.4 and 30.1 ± 3.1% in females and males, respectively, when perfusion pressure increased from 100 to 180 mmHg. The removal of endothelia did not alter the myogenic response in both sexes. Functional hyperemia responses to whisker-barrel stimulation and cognition examined with an eight-arm water maze were similar in both sexes. These results demonstrate that there are intrinsic structural differences in the MCA between sexes, which are associated with diminished myogenic response and CBF autoregulation in females. The structural differences do not alter neurovascular coupling and cognition at a young age; however, they might play a role in the development of CVD after menopause.NEW & NOTEWORTHY Using perfusion fixation of the middle cerebral artery (MCA) in calcium-free solution at physiological pressure and systematically randomly sampling the sections prepared from the same M2 segments of MCA, we found that there are structural differences that are associated with altered cerebral blood flow (CBF) autoregulation but not neurovascular coupling and cognition in young, healthy Sprague-Dawley (SD) rats. Understanding the intrinsic differences in cerebrovascular structure and function in males and females is essential to develop new pharmaceutical treatments for cerebrovascular disease (CVD).


Subject(s)
Middle Cerebral Artery/physiology , Muscle, Smooth, Vascular/physiology , Sex Characteristics , Vasoconstriction , Animals , Brain/blood supply , Brain/physiology , Cells, Cultured , Cognition , Female , Male , Middle Cerebral Artery/cytology , Muscle Tonus , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...