Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 27(1): 47-52, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10865208

ABSTRACT

Estrogens modulate bone tissue turnover in both experimental animal models and postmenopausal women. Our previous studies have shown that exposure to diethylstilbestrol (DES) during the perinatal period increases peak bone mass in female mice in adulthood. We investigated whether developmental DES exposure can influence bone mass by affecting osteoclastogenesis. Female mice were injected with 100 microg/kg body weight DES from days 9-16 of gestation or, alternatively, pups received neonatal injections of 2 microg of DES from days 1-5 of life. Animals were weaned at 21 days of age and effects of estrogen on bone cells were evaluated in adulthood. A significant increase in bone mass in female mice was already observed at 2 months, with a maximal effect in older animals. Bone sections from DES-treated animals showed a significant decrease in osteoclast number and tartrate-resistant acid phosphatase (TRAP) enzymatic activity as compared with controls. To verify the importance of the estrogen surge at puberty in this event, a group of control and DES-treated mice were ovariectomized at 17 days to prevent puberty, and potential effect on osteoclastic cells was evaluated in adulthood. As expected, ovariectomy induced an increase of TRAP-positive cells. DES treatment blunted the ovariectomized-dependent increase of the total number of osteoclastic cells, suggesting a role of developmental DES exposure in the process of bone-cell imprinting. Our data indicate, for the first time, that transient changes in estrogen levels during development modulate bone turnover and osteoclastogenesis likely participating in bone-cell imprinting during early phases of bone development, and that this effect could be induced by direct alteration of bone microenvironment.


Subject(s)
Bone Remodeling/drug effects , Bone Remodeling/physiology , Diethylstilbestrol/pharmacology , Estrogens, Non-Steroidal/pharmacology , Osteoclasts/cytology , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Embryonic and Fetal Development , Female , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/physiology , Mice , Osteoclasts/drug effects , Osteoclasts/physiology , Pregnancy , Prenatal Exposure Delayed Effects
2.
Endocrinology ; 137(5): 2118-25, 1996 May.
Article in English | MEDLINE | ID: mdl-8612556

ABSTRACT

Estrogens have important effects on bone turnover in both humans and experimental animals models. Moreover, the decreased level of estrogen after menopause appears to be one of the key factors in determining postmenopausal osteoporosis. The presence of estrogen receptor in both osteoblasts and osteoclasts has suggested a direct role of these steroid hormones on bone tissue. Thus, this tissue is now regarded as a specific estrogen target tissue. Exposure to estrogens during various stages of development has been shown to irreversibly influence responsive target organs. We have recently shown that transient developmental neonatal exposure (days 1-5 of life) of female mice to estrogen resulted in an augmented bone density in the adult animals. The aim of the present study was to evaluate whether short-term modification of maternal estrogen levels during pregnancy would induce changes in the skeleton of the developing fetuses and to identify any long-term alterations that may occur. Pregnant mice were injected with varying doses (0.1-100 micrograms/kg maternal BW) of the synthetic estrogen diethylstilbestrol (DES) from day 9-16 of pregnancy. Offspring were weaned at 21 days of age, and effects on bone tissue of the female mice were evaluated in adulthood (6-9 months of age). Prenatal DES treatment(s) did not significantly affect BW. However, a dose-dependent increase in bone mass, both in the trabecular and cortical compartments, was observed in the prenatal DES-exposed female offspring. Furthermore, long bones of DES-exposed females were shorter than controls. Normal skeletal mineralization accompanied these changes in the bone tissue, as shown by a parallel increase in skeletal calcium content. Double tetracycline labeling performed in 6-month-old DES-exposed animals showed an increase in mineral apposition rate in adult DES-exposed mice as compared with untreated control animals, although no significant difference in the circulating estrogen levels was found in animals of this age. Experiments were then performed to evaluate whether perturbation of the estrogen surge at puberty in these diethylstilbestrol (DES)-exposed mice could reverse the observed changes. Femur length was chosen as a marker of potential estrogenic effect. Prepubertal ovariectomy of the prenatally DES-treated animals could only partially reverse the effects observed in the skeleton of the DES-treated animals. Further experiments were performed to evaluate whether these changes could have occurred in utero. CD-1 pregnant female mice were injected with DES (100 micrograms/kg maternal BW) from days 9-15 of gestation. On day 16 of gestation, fetuses were examined and stained by a standard Alizarin Red S and Alcian Blue procedure to visualize calcified and uncalcified skeletal tissue. Estrogen treatment induced an increase in the amount of calcified skeleton as compared with untreated controls and also a decrease in the length of long bones, strongly suggesting a change in both endochondral ossification and endosteal and periosteal bone formation. In summary, these data show, for the first time, that alterations in the maternal estrogenic levels during pregnancy can influence early phases of fetal bone tissue development and subsequently result in permanent changes in the skeleton. Finally, the effect of this short-term estrogen treatment can be seen in the fetal skeleton, suggesting an estrogen-imprinting effect on bone cell-programming in fetal life because treatment effects on bone cell turnover can be observed later in adult life.


Subject(s)
Bone Development/drug effects , Bone and Bones/embryology , Calcification, Physiologic/drug effects , Diethylstilbestrol/pharmacology , Estrogens/physiology , Prenatal Exposure Delayed Effects , Animals , Bone and Bones/drug effects , Calcium/metabolism , Diethylstilbestrol/administration & dosage , Dose-Response Relationship, Drug , Female , Femur/anatomy & histology , Femur/drug effects , Femur/metabolism , Mice , Ovariectomy , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...