Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 36(46): 7043-7047, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30301641

ABSTRACT

INTRODUCTION: A monovalent rotavirus vaccine was introduced in the Ethiopian Expanded Program on Immunization from November 2013. We compared impact of rotavirus vaccine introduction on rotavirus associated acute diarrhea hospitalizations and genotypic characteristics of rotavirus strains pre-and post-vaccine introduction. METHODS: Sentinel surveillance for diarrhea among children <5 years of age was conducted at 3 hospitals in Addis Ababa, Ethiopia from 2011 to 2017. Stool specimens were collected from enrolled children and tested using an antigen capture enzyme immunoassay. Rotavirus positive samples (156 from pre- and 141 from post-vaccination periods) were further characterized by rotavirus genotyping methods to identify the predominant G and P types circulating during the surveillance era. RESULTS: A total of 788 children were enrolled during the pre- (July 2011-June 2013) and 815 children during the post-vaccination (July 2014-June 2017) periods. The proportion of diarrhea hospitalizations due to rotavirus among children <5 years of age declined by 17% from 24% (188/788) in the pre-vaccine period and to 20% (161/185) in post-vaccine introduction era. Similarly, a reduction of 18% in proportion of diarrhea hospitalizations due to rotavirus in children <12 months of age in the post (27%) vs pre-vaccine (33%) periods was observed. Seasonal peaks of rotavirus declined following rotavirus vaccine introduction. The most prevalent circulating strains were G12P[8] in 2011 (36%) and in 2012 (27%), G2P[4] (35%) in 2013, G9P[8] (19%) in 2014, G3P[6] and G2P[4] (19% each) in 2015, and G3P[8] (29%) in 2016. DISCUSSION: Following rotavirus vaccine introduction in Ethiopia, a reduction in rotavirus associated hospitalizations was seen in all age groups with the greatest burden in children <12 months of age. A wide variety of rotavirus strains circulated in the pre- and post-vaccine introduction periods.


Subject(s)
Genotype , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Rotavirus/classification , Rotavirus/genetics , Child, Preschool , Epidemiological Monitoring , Ethiopia/epidemiology , Feces/virology , Female , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Gastroenteritis/virology , Genotyping Techniques , Hospitalization , Hospitals , Humans , Immunoenzyme Techniques , Infant , Infant, Newborn , Male , Rotavirus/isolation & purification , Rotavirus Infections/virology
2.
Infect Genet Evol ; 63: 79-88, 2018 09.
Article in English | MEDLINE | ID: mdl-29782933

ABSTRACT

Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity.


Subject(s)
Genotype , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , Whole Genome Sequencing , Africa/epidemiology , Feces/virology , Humans , Phylogeny , Reassortant Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...