Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 895729, 2022.
Article in English | MEDLINE | ID: mdl-35784572

ABSTRACT

Background: Up to 80% of breast cancers (BCa) are estrogen receptor positive and current treatments target the estrogen receptor (endocrine therapies) and/or CDK4/6 (CDK4/6 inhibitors). CCND1 encodes the protein cyclin D1, responsible for regulation of G1 to S phase transition in the cell cycle. CCND1 amplification is common in BCa and contributes to increased cyclin D1 expression. As there are signalling interactions between cyclin D1 and the estrogen receptor, understanding the impact of CCND1 amplification on estrogen receptor positive patients' disease outcomes, is vital. This review aims to evaluate CCND1 amplification as a prognostic and predictive biomarker in BCa. Materials and Methods: Publications were retrieved from the databases: PubMed, MEDLINE, Embase and Cochrane library. Exclusion criteria were duplication, publication type, non-English language, in vitro and animal studies, not BCa, male BCa, premenopausal BCa, cohort size <35, CCND1 amplification not reported. Publications with cohort duplication, and inadequate recurrence free survival (RFS) and overall survival (OS) data, were also excluded. Included publications were assessed for Risk of Bias (RoB) using the Quality In Prognosis Studies tool. Statistical analyses (Inverse Variance and Mantel-Haenszel) were performed in Review Manager. The PROSPERO registration number is [CRD42020208179]. Results: CCND1 amplification was significantly associated with positive estrogen receptor status (OR:1.70, 95% CI:1.19-2.43, p = 0.004) and cyclin D1 overexpression (OR: 5.64, 95% CI: 2.32-13.74, p=0.0001). CCND1 amplification was significantly associated with shorter RFS (OR: 1.64, 95% CI: 1.13-2.38, p = 0.009), and OS (OR: 1.51, 95% CI: 1.19-1.92, p = 0.0008) after removal of studies with a high RoB. In endocrine therapy treated patients specifically, CCND1 amplification predicted shorter RFS (HR: 2.59, 95% CI: 1.96-3.41, p < 0.00001) and OS (HR: 1.59, 95% CI: 1.00-2.49, p = 0.05) also after removal of studies with a high RoB. Conclusion: While a lack of standardised approach for the detection of CCND1 amplification is to be considered as a limitation, CCND1 amplification was found to be prognostic of shorter RFS and OS in BCa. CCND1 amplification is also predictive of reduced RFS and OS in endocrine therapy treated patients specifically. With standardised methods and cut offs for the detection of CCND1 amplification, CCND1 amplification would have potential as a predictive biomarker in breast cancer patients. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020208179.


Subject(s)
Breast Neoplasms , Cyclin D1 , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Amplification , Humans , Postmenopause/genetics , Prognosis , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
2.
J Cancer Res Clin Oncol ; 147(4): 1007-1017, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33547950

ABSTRACT

The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management.In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Glioma/pathology , Mutation , Telomerase/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Humans , Prognosis
3.
Cells ; 9(9)2020 09 11.
Article in English | MEDLINE | ID: mdl-32932819

ABSTRACT

Therapy of hormone receptor positive breast cancer (BCa) generally targets estrogen receptor (ER) function and signaling by reducing estrogen production or by blocking its interaction with the ER. Despite good long-term responses, resistance to treatment remains a significant issue, with approximately 40% of BCa patients developing resistance to ET. Mutations in the gene encoding ERα, ESR1, have been identified in BCa patients and are implicated as drivers of resistance and disease recurrence. Understanding the molecular consequences of these mutations on ER protein levels and its activity, which is tightly regulated, is vital. ER activity is in part controlled via its short protein half-life and therefore changes to its stability, either through mutations or alterations in pathways involved in protein stability, may play a role in therapy resistance. Understanding these connections and how ESR1 alterations could affect protein stability may identify novel biomarkers of resistance. This review explores the current reported data regarding posttranslational modifications (PTMs) of the ER and the potential impact of known resistance associated ESR1 mutations on ER regulation by affecting these PTMs in the context of ET resistance.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Protein Processing, Post-Translational/genetics , Receptors, Estrogen/genetics , Female , Humans
4.
Cells ; 8(7)2019 07 08.
Article in English | MEDLINE | ID: mdl-31288377

ABSTRACT

Detection of androgen receptor (AR) variant 7 (AR-V7) is emerging as a clinically important biomarker in castrate resistant prostate cancer (CRPC). Detection is possible from tumor tissue, which is often inaccessible in the advanced disease setting. With recent progress in detecting AR-V7 in circulating tumor cells (CTCs), circulating tumor RNA (ctRNA) and exosomes from prostate cancer patients, liquid biopsies have emerged as an alternative to tumor biopsy. Therefore, it is important to clarify whether these approaches differ in sensitivity in order to achieve the best possible biomarker characterization for the patient. In this study, blood samples from 44 prostate cancer patients were processed for CTCs and ctRNA with subsequent AR-V7 testing, while exosomal RNA was isolated from 16 samples and tested. Detection of AR and AR-V7 was performed using a highly sensitive droplet digital PCR-based assay. AR and AR-V7 RNA were detectable in CTCs, ctRNA and exosome samples. AR-V7 detection from CTCs showed higher sensitivity and has proven specificity compared to detection from ctRNA and exosomes. Considering that CTCs are almost always present in the advanced prostate cancer setting, CTC samples should be considered the liquid biopsy of choice for the detection of this clinically important biomarker.


Subject(s)
Biomarkers, Tumor/blood , Neoplastic Cells, Circulating/chemistry , Prostatic Neoplasms, Castration-Resistant/diagnosis , Receptors, Androgen/blood , Aged , Aged, 80 and over , Alternative Splicing , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids , Exosomes , Humans , Liquid Biopsy/methods , Male , Middle Aged , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms/blood , Protein Isoforms/genetics , RNA, Neoplasm/blood , RNA, Neoplasm/genetics , Receptors, Androgen/genetics , Sensitivity and Specificity
5.
Epigenetics ; 14(10): 989-1002, 2019 10.
Article in English | MEDLINE | ID: mdl-31208284

ABSTRACT

Many cancer therapies operate by inducing double-strand breaks (DSBs) in cancer cells, however treatment-resistant cells rapidly initiate mechanisms to repair damage enabling survival. While the DNA repair mechanisms responsible for cancer cell survival following DNA damaging treatments are becoming better understood, less is known about the role of the epigenome in this process. Using prostate cancer cell lines with differing sensitivities to radiation treatment, we analysed the DNA methylation profiles prior to and following a single dose of radiotherapy (RT) using the Illumina Infinium HumanMethylation450 BeadChip platform. DSB formation and repair, in the absence and presence of the DNA hypomethylating agent, 5-azacytidine (5-AzaC), were also investigated using γH2A.X immunofluorescence staining. Here we demonstrate that DNA methylation is generally stable following a single dose of RT; however, a small number of CpG sites are stably altered up to 14 d following exposure. While the radioresistant and radiosensitive cells displayed distinct basal DNA methylation profiles, their susceptibility to DNA damage appeared similar demonstrating that basal DNA methylation has a limited influence on DSB induction at the regions examined. Recovery from DSB induction was also similar between these cells. Treatment with 5-AzaC did not sensitize resistant cells to DNA damage, but rather delayed recruitment of phosphorylated BRCA1 (S1423) and repair of DSBs. These results highlight that stable epigenetic changes are possible following a single dose of RT and may have significant clinical implications for cancer treatment involving recurrent or fractionated dosing regimens.


Subject(s)
Azacitidine/pharmacology , DNA Damage , DNA Methylation , Prostatic Neoplasms/genetics , BRCA1 Protein/metabolism , Cell Line, Tumor , CpG Islands/drug effects , CpG Islands/radiation effects , DNA Methylation/drug effects , DNA Methylation/radiation effects , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/radiation effects , High-Throughput Nucleotide Sequencing , Humans , Male , PC-3 Cells , Phosphorylation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Radiation Tolerance , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...