Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009815

ABSTRACT

Cancer dependency maps have accelerated the discovery of tumor vulnerabilities that can be exploited as drug targets when translatable to patients. The Cancer Genome Atlas (TCGA) is a compendium of 'maps' detailing the genetic, epigenetic and molecular changes that occur during the pathogenesis of cancer, yet it lacks a dependency map to translate gene essentiality in patient tumors. Here, we used machine learning to build translational dependency maps for patient tumors, which identified tumor vulnerabilities that predict drug responses and disease outcomes. A similar approach was used to map gene tolerability in healthy tissues to prioritize tumor vulnerabilities with the best therapeutic windows. A subset of patient-translatable synthetic lethalities were experimentally tested, including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro and in vivo. Notably, PAPSS1 synthetic lethality was driven by collateral deletion of PAPSS2 with PTEN and was correlated with patient survival. Finally, the translational dependency map is provided as a web-based application for exploring tumor vulnerabilities.

2.
J Med Chem ; 61(7): 2694-2706, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29547693

ABSTRACT

We previously reported the discovery, validation, and structure-activity relationships of a series of piperidinyl ureas that potently inhibit the DCN1-UBE2M interaction. We demonstrated that compound 7 inhibits both the DCN1-UBE2M protein-protein interaction and DCN1-mediated cullin neddylation in biochemical assays and reduces levels of steady-state cullin neddylation in a squamous carcinoma cell line harboring DCN1 amplification. Although compound 7 exhibits good solubility and permeability, it is rapidly metabolized in microsomal models (CLint = 170 mL/min/kg). This work lays out the discovery of an orally bioavailable analogue, NAcM-OPT (67). Compound 67 retains the favorable biochemical and cellular activity of compound 7 but is significantly more stable both in vitro and in vivo. Compound 67 is orally bioavailable, well tolerated in mice, and currently used to study the effects of acute pharmacologic inhibition of the DCN1-UBE2M interaction on the NEDD8/CUL pathway.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cullin Proteins/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Drug Discovery , Drug Screening Assays, Antitumor , Female , Humans , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/drug therapy , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , NEDD8 Protein/antagonists & inhibitors , NEDD8 Protein/drug effects , Proteins , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemistry
3.
Eur J Med Chem ; 146: 501-510, 2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29407975

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in children. Up to a quarter of ALL patients relapse and face poor prognosis. To identify new compound leads, we conducted a phenotypic screen using terrestrial natural product (NP) fractions against immortalized ALL cellular models. We identified vitexin, a flavonoid, as a promising hit with biological activity (EC50 = 30 µM) in pre-B cell ALL models with no toxicity against normal human tissue (BJ cells) at the tested concentrations. To develop more potent compounds against ALL and elucidate its potential mode of action, a vitexin-inspired compound library was synthesized. Thus, we developed an improved and scalable protocol for the direct synthesis of 4-quinolone core heterocycles containing an N-sulfonamide using a one-pot condensation reaction protocol. The newly generated compounds represent a novel molecular scaffold against ALL as exemplified by compounds 13 and 15, which demonstrated EC50 values in the low micromolar range (0.3-10 µM) with little to no toxicity in normal cellular models. Computational studies support the hypothesis that these compounds are potential CDK inhibitors. The compounds induced apoptosis, caused cell arrest at G0/G1 and G2/M, and induced ROS in cancer cells.


Subject(s)
Apigenin/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Apigenin/chemical synthesis , Apigenin/chemistry , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Structure-Activity Relationship
4.
J Med Chem ; 60(4): 1568-1579, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28112927

ABSTRACT

Carboxylesterases (CEs) are ubiquitous enzymes that are responsible for the metabolism of xenobiotics, including drugs such as irinotecan and oseltamivir. Inhibition of CEs significantly modulates the efficacy of such agents. We report here that ß-lapachone is a potent, reversible CE inhibitor with Ki values in the nanomolar range. A series of amino and phenoxy analogues have been synthesized, and although the former are very poor inhibitors, the latter compounds are highly effective in modulating CE activity. Our data demonstrate that tautomerism of the amino derivatives to the imino forms likely accounts for their loss in biological activity. A series of N-methylated amino derivatives, which are unable to undergo such tautomerism, were equal in potency to the phenoxy analogues and demonstrated selectivity for the liver enzyme hCE1. These specific inhibitors, which are active in cell culture models, will be exceptionally useful reagents for reaction profiling of esterified drugs in complex biological samples.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Cell Line , Humans , Hydrolysis/drug effects , Irinotecan , Liver/enzymology , Molecular Docking Simulation , Oseltamivir/pharmacology
5.
Malar J ; 15(1): 270, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27165106

ABSTRACT

BACKGROUND: A diverse library of pre-fractionated plant extracts, generated by an automated high-throughput system, was tested using an in vitro anti-malarial screening platform to identify known or new natural products for lead development. The platform identifies hits on the basis of in vitro growth inhibition of Plasmodium falciparum and counter-screens for cytotoxicity to human foreskin fibroblast or embryonic kidney cell lines. The physical library was supplemented by early-stage collection of analytical data for each fraction to aid rapid identification of the active components within each screening hit. RESULTS: A total of 16,177 fractions from 1300 plants were screened, identifying several P. falciparum inhibitory fractions from 35 plants. Although individual fractions were screened for bioactivity to ensure adequate signal in the analytical characterizations, fractions containing less than 2.0 mg of dry weight were combined to produce combined fractions (COMBIs). Fractions of active COMBIs had EC50 values of 0.21-50.28 and 0.08-20.04 µg/mL against chloroquine-sensitive and -resistant strains, respectively. In Berberis thunbergii, eight known alkaloids were dereplicated quickly from its COMBIs, but berberine was the most-active constituent against P. falciparum. The triterpenoids α-betulinic acid and ß-betulinic acid of Eugenia rigida were also isolated as hits. Validation of the anti-malarial discovery platform was confirmed by these scaled isolations from B. thunbergii and E. rigida. CONCLUSIONS: These results demonstrate the value of curating and exploring a library of natural products for small molecule drug discovery. Attention given to the diversity of plant species represented in the library, focus on practical analytical data collection, and the use of counter-screens all facilitate the identification of anti-malarial compounds for lead development or new tools for chemical biology.


Subject(s)
Antimalarials/pharmacology , Biological Products/pharmacology , Plant Extracts/pharmacology , Plants/chemistry , Plasmodium falciparum/drug effects , Antimalarials/isolation & purification , Antimalarials/toxicity , Biological Products/isolation & purification , Biological Products/toxicity , Cell Survival/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Fibroblasts/drug effects , High-Throughput Screening Assays , Humans , Plant Extracts/isolation & purification , Plant Extracts/toxicity
6.
Cancer Res ; 76(9): 2573-86, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27197264

ABSTRACT

Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR.


Subject(s)
Stomach Neoplasms/classification , Stomach Neoplasms/genetics , Transcriptome/genetics , Tumor Microenvironment/genetics , Animals , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling/methods , Heterografts , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Mice , Neovascularization, Pathologic/genetics , Oligonucleotide Array Sequence Analysis , Tissue Array Analysis , Vascular Endothelial Growth Factor A/metabolism
7.
AAPS J ; 18(3): 788-91, 2016 05.
Article in English | MEDLINE | ID: mdl-26984832

ABSTRACT

The in vivo biodistribution and pharmacokinetics of 1329, a novel spectinamide antibiotic with anti-tubercular activity, were studied during intravenous administration of an tritium-labeled compound for nine consecutive, 12-hourly doses to rats. Serial blood samples were collected after the first and the eighth dose, and major organs and tissues were collected 1 h after the ninth dose. Urinary and fecal excretion was monitored throughout the dosing period. Radioactivity in the collected samples was assessed by scintillation counting. During the course of treatment, 86.6% of the administered radioactivity was recovered in urine, feces, organs, and muscle tissue. Urinary excretion was the major route of elimination, with 70% of radioactivity recovered from urine and 12.6% from feces. The time profiles of radioactivity in serum after the first and the eighth dose were identical for the first 2 h post-dose, with similar Cmax (3.39 vs. 3.55 mCi/L) and AUC0-τ (5.08 vs. 5.17 mCi • h/L), indicating no substantial accumulation of 1329 during multiple dosing. Radioactivity in major target organs for pulmonary tuberculosis infection, the lungs and spleen, was 2.79- and 3.06-fold higher than in the blood. Similarly, the intracellular uptake of 1329 into macrophages was sixfold higher than for streptomycin. Overall, these observations suggest biodistribution properties favorable for targeting pulmonary tuberculosis infections.


Subject(s)
Anti-Bacterial Agents/metabolism , Spectinomycin/analogs & derivatives , Spectinomycin/metabolism , Tuberculosis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Male , Mice , Rats , Rats, Sprague-Dawley , Spectinomycin/pharmacology , Tissue Distribution/drug effects , Tissue Distribution/physiology , Treatment Outcome
8.
Nat Genet ; 48(4): 367-73, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26878724

ABSTRACT

Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by TPMT genetic polymorphisms. Recent studies identified germline NUDT15 variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four NUDT15 coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4-100% loss of nucleotide diphosphatase activity. Loss-of-function NUDT15 diplotypes were consistently associated with thiopurine intolerance across the three cohorts (P = 0.021, 2.1 × 10(-5) and 0.0054, respectively; meta-analysis P = 4.45 × 10(-8), allelic effect size = -11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity in vitro, and patients with defective NUDT15 alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating NUDT15 variants may inform personalized thiopurine therapy.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Mercaptopurine/adverse effects , Pyrophosphatases/genetics , Antimetabolites, Antineoplastic/therapeutic use , Genetic Association Studies , Hematopoiesis/drug effects , Humans , Mercaptopurine/therapeutic use , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrophosphatases/metabolism
10.
Stand Genomic Sci ; 10: 81, 2015.
Article in English | MEDLINE | ID: mdl-26500717

ABSTRACT

Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and ß-galactooligosaccharides.

11.
J Nat Prod ; 78(9): 2255-9, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26371504

ABSTRACT

Antifungal screening of small-molecule natural product libraries showed that a column fraction (CF) derived from the plant extract of Sagittaria latifolia was active against the fungal pathogen Cryptococcus neoformans. Dereplication analysis by liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy ((1)H NMR) indicated the presence of new compounds in this CF. Subsequent fractionation of the plant extract resulted in the identification of two new isopimaradiene-type diterpenoids, 1 and 2. The structures of 1 and 2 were determined by chemical methods and spectroscopic analysis as isopimara-7,15-dien-19-ol 19-O-α-l-arabinofuranoside and isopimara-7,15-dien-19-ol 19-O-α-l-(5'-acetoxy)arabinofuranoside, respectively. Compound 1 exhibited IC50 values of 3.7 and 1.8 µg/mL, respectively, against C. neoformans and C. gattii. Its aglycone, isopimara-7,15-dien-19-ol (3), resulting from acid hydrolysis of 1, was also active against the two fungal pathogens, with IC50 values of 9.2 and 6.8 µg/mL, respectively. This study demonstrates that utilization of the combined LC-MS and (1)H NMR analytical tools is an improved chemical screening approach for hit prioritization in natural product drug discovery.


Subject(s)
Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Diterpenes/isolation & purification , Diterpenes/pharmacology , Glycosides/isolation & purification , Glycosides/pharmacology , Nuclear Magnetic Resonance, Biomolecular/methods , Sagittaria/chemistry , Antifungal Agents/chemistry , Cryptococcus/drug effects , Diterpenes/chemistry , Drug Discovery , Glycosides/chemistry , Inhibitory Concentration 50 , Molecular Structure , Pyridones , Small Molecule Libraries , Wisconsin
12.
Stand Genomic Sci ; 9(3): 1105-17, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-25197486

ABSTRACT

Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum 'Thermotogae'. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3(T) is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

13.
Bioconjug Chem ; 25(9): 1664-77, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25133934

ABSTRACT

The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows it to bind many drugs and drug leads, possibly causing undesired drug-drug interactions. Therefore, it is crucial to evaluate whether chemicals or drugs bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and nonradioactive nature. On the basis of our previously characterized 4 (BODIPY FL vinblastine), a high-affinity PXR probe, we developed 20 (BODIPY FL vindoline) and showed that it is a novel and potent PXR fluorescent probe with Kd of 256 nM in a time-resolved fluorescence resonance energy transfer (TR-FRET) binding assay with PXR. By using 20 (BODIPY FL vindoline) in the PXR TR-FRET assay, we obtained a more than 7-fold signal-to-background ratio and high signal stability (signal was stable for at least 120 min, and Z'-factor > 0.85 from 30 to 240 min). The assay can tolerate DMSO up to 2%. This assay has been used to evaluate a panel of PXR ligands for their PXR-binding affinities. The performance of 20 (BODIPY FL vindoline) in the PXR TR-FRET assay makes it an ideal PXR fluorescent probe, and the newly developed PXR TR-FRET assay with 20 (BODIPY FL vindoline) as a fluorescent probe is suitable for high-throughput screening to identify PXR-binding ligands.


Subject(s)
Boron Compounds/chemistry , Boron Compounds/metabolism , Drug Design , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Receptors, Steroid/metabolism , Vinblastine/analogs & derivatives , Dimethyl Sulfoxide/chemistry , Humans , Pregnane X Receptor , Protein Structure, Tertiary , Receptors, Steroid/chemistry , Vinblastine/chemistry
14.
J Nat Prod ; 77(4): 902-9, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24617915

ABSTRACT

The generation of natural product libraries containing column fractions, each with only a few small molecules, using a high-throughput, automated fractionation system, has made it possible to implement an improved dereplication strategy for selection and prioritization of leads in a natural product discovery program. Analysis of databased UPLC-MS-ELSD-PDA information of three leads from a biological screen employing the ependymoma cell line EphB2-EPD generated details on the possible structures of active compounds present. The procedure allows the rapid identification of known compounds and guides the isolation of unknown compounds of interest. Three previously known flavanone-type compounds, homoeriodictyol (1), hesperetin (2), and sterubin (3), were identified in a selected fraction derived from the leaves of Eriodictyon angustifolium. The lignan compound deoxypodophyllotoxin (8) was confirmed to be an active constituent in two lead fractions derived from the bark and leaves of Thuja occidentalis. In addition, two new but inactive labdane-type diterpenoids with an uncommon triol side chain were also identified as coexisting with deoxypodophyllotoxin in a lead fraction from the bark of T. occidentalis. Both diterpenoids were isolated in acetylated form, and their structures were determined as 14S,15-diacetoxy-13R-hydroxylabd-8(17)-en-19-oic acid (9) and 14R,15-diacetoxy-13S-hydroxylabd-8(17)-en-19-oic acid (10), respectively, by spectroscopic data interpretation and X-ray crystallography. This work demonstrates that a UPLC-MS-ELSD-PDA database produced during fractionation may be used as a powerful dereplication tool to facilitate compound identification from chromatographically tractable small-molecule natural product libraries.


Subject(s)
Biological Products/chemistry , Biological Products/isolation & purification , Diterpenes/isolation & purification , Flavones/isolation & purification , Hesperidin/isolation & purification , Mass Spectrometry/methods , Small Molecule Libraries , Thuja/chemistry , Arizona , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Databases, Factual , Diterpenes/chemistry , Flavones/chemistry , Hesperidin/chemistry , Molecular Conformation , Molecular Structure , Plant Leaves/chemistry
15.
Stand Genomic Sci ; 9: 10, 2014.
Article in English | MEDLINE | ID: mdl-25780503

ABSTRACT

Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448(T), were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.

16.
Stand Genomic Sci ; 8(1): 88-105, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23961314

ABSTRACT

Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain, H1(T), was isolated in 1990 from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of interest because it enhances the degradation of cellulose when grown in co-culture with Clostridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassification of S. caldaria and two other Spirochaeta species as members of the emended genus Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished genomic features related to their divergent lifestyles, the physiological and functional genomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little taxonomic value. The 3,239,340 bp long genome of strain H1(T) with its 2,869 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project.

17.
J Nat Prod ; 76(1): 36-44, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23286284

ABSTRACT

The roots of Salvia miltiorrhiza ("Danshen") are used in traditional Chinese medicine for the treatment of numerous ailments including cardiovascular disease, hypertension, and ischemic stroke. Extracts of S. miltiorrhiza roots in the formulation "Compound Danshen Dripping Pill" are undergoing clinical trials in the United States. To date, the active components of this material have not been conclusively identified. We have determined that S. miltiorrhiza roots contain potent human carboxylesterase (CE) inhibitors, due to the presence of tanshinones. K(i) values in the nM range were determined for inhibition of both the liver and intestinal CEs. As CEs hydrolyze clinically used drugs, the ability of tanshinones and S. miltiorrhiza root extracts to modulate the metabolism of the anticancer prodrug irinotecan (CPT-11) was assessed. Our results indicate that marked inhibition of human CEs occurs following incubation with both pure compounds and crude material and that drug hydrolysis is significantly reduced. Consequently, a reduction in the cytotoxicity of irinotecan is observed following dosing with either purified tanshinones or S. miltiorrhiza root extracts. It is concluded that remedies containing tanshinones should be avoided when individuals are taking esterified agents and that patients should be warned of the potential drug-drug interaction that may occur with this material.


Subject(s)
Abietanes/isolation & purification , Abietanes/pharmacology , Camptothecin/analogs & derivatives , Carboxylesterase/antagonists & inhibitors , Drugs, Chinese Herbal/pharmacology , Phenanthrolines/pharmacology , Salvia miltiorrhiza/chemistry , Abietanes/chemistry , Abietanes/pharmacokinetics , Algorithms , Camptothecin/chemistry , Camptothecin/pharmacology , Clinical Trials, Phase I as Topic , Herb-Drug Interactions , Humans , Irinotecan , Medicine, Chinese Traditional , Molecular Structure , Plant Roots/chemistry
18.
Stand Genomic Sci ; 6(2): 155-64, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22768359

ABSTRACT

Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

19.
Stand Genomic Sci ; 6(2): 145-54, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22768358

ABSTRACT

Runella slithyformis Larkin and Williams 1978 is the type species of the genus Runella, which belongs to the Cytophagaceae, a family that was only recently classified to the order Cytophagales in the class Cytophagia. The species is of interest because it is able to grow at temperatures as low as 4°C. This is the first completed genome sequence of a member of the genus Runella and the sixth sequence from the family Cytophagaceae. The 6,919,729 bp long genome consists of a 6.6 Mbp circular genome and five circular plasmids of 38.8 to 107.0 kbp length, harboring a total of 5,974 protein-coding and 51 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

20.
Stand Genomic Sci ; 6(2): 230-9, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22768366

ABSTRACT

Thermovirga lienii Dahle and Birkeland 2006 is a member of the genus Thermovirga in the genomically moderately well characterized phylum 'Synergistetes'. Members of this relatively recently proposed phylum 'Synergistetes' are of interest because of their isolated phylogenetic position and their diverse habitats, e.g. from humans to oil wells. The genome of T. lienii Cas60314(T) is the fifth genome sequence (third completed) from this phylum to be published. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,999,646 bp long genome (including one plasmid) with its 1,914 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

SELECTION OF CITATIONS
SEARCH DETAIL
...