Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
2.
FEMS Yeast Res ; 18(6)2018 09 01.
Article in English | MEDLINE | ID: mdl-29931272

ABSTRACT

This study employed cell recycling, batch adaptation, cell mating and high-throughput screening to select adapted Spathaspora passalidarum strains with improved fermentative ability. The most promising candidate YK208-E11 (E11) showed a 3-fold increase in specific fermentation rate compared to the parental strain and an ethanol yield greater than 0.45 g/g substrate while co-utilizing cellobiose, glucose and xylose. Further characterization showed that strain E11 also makes 40% less biomass compared to the parental strain when cultivated in rich media under aerobic conditions. A tetrazolium agar overlay assay in the presence of respiration inhibitors, including rotenone, antimycin A, KCN and salicylhydroxamic acid elucidated the nature of the mutational events. Results indicated that E11 has a deficiency in its respiration system that could contribute to its low cell yield. Strain E11 was subjected to whole genome sequencing and an ∼11 kb deletion was identified; the open reading frames absent in strain E11 code for proteins with predicted functions in respiration, cell division and the actin cytoskeleton, and may contribute to the observed physiology of the adapted strain. Results of the tetrazolium overlay also suggest that cultivation on xylose affects the respiration capacity in the wild-type strain, which could account for its faster fermentation of xylose as compared to glucose. These results support our previous finding that S. passalidarum has highly unusual physiological responses to xylose under oxygen limitation.


Subject(s)
Adaptation, Physiological , Industrial Microbiology , Saccharomycetales/growth & development , Saccharomycetales/metabolism , Biomass , Ethanol/metabolism , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genome, Fungal/genetics , Microbial Viability , Oxygen/metabolism , Saccharomycetales/genetics , Saccharomycetales/physiology , Sequence Analysis, DNA , Sequence Deletion , Sugars/metabolism
3.
Proc Natl Acad Sci U S A ; 113(35): 9882-7, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27535936

ABSTRACT

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Subject(s)
Biotechnology/methods , Genome, Fungal/genetics , Genomics/methods , Yeasts/genetics , Ascomycota/classification , Ascomycota/genetics , Ascomycota/metabolism , Evolution, Molecular , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genetic Code/genetics , Metabolic Networks and Pathways/genetics , Phylogeny , Species Specificity , Yeasts/classification , Yeasts/metabolism
4.
Bioresour Technol ; 200: 780-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26580895

ABSTRACT

Lipid production by oleaginous yeasts is optimal at high carbon-to-nitrogen ratios. In the current study, nitrogen and carbon consumption by Lipomyces starkeyi were directly measured in defined minimal media with nitrogen content and agitation rates as variables. Shake flask cultures with an initial C:N ratio of 72:1 cultivated at 200rpm resulted in a lipid output of 10g/L, content of 55%, yield of 0.170g/g, and productivity of 0.06g/L/h. All of these values decreased by ≈50-60% when the agitation rate was raised to 300rpm or when the C:N ratio was lowered to 24:1, demonstrating the importance of these parameters. Under all conditions, L. starkeyi cultures tolerated acidified media (pH≈2.6) without difficulty, and produced considerable amounts of alcohols; including ethanol, mannitol, arabitol, and 2,3-butanediol. L. starkeyi also produced lipids from a corn stover hydrolysate, showing its potential to produce biofuels from renewable agricultural feedstocks.


Subject(s)
Lipid Metabolism/drug effects , Lipids/biosynthesis , Lipomyces/metabolism , Nitrogen/pharmacology , Oxygen/pharmacology , Aerobiosis/drug effects , Ammonia/metabolism , Biofuels , Carbon/analysis , Fatty Acids/metabolism , Hydrogen-Ion Concentration , Lipomyces/drug effects , Polymers/metabolism , Secondary Metabolism/drug effects , Waste Products , Zea mays/chemistry
5.
Curr Opin Genet Dev ; 35: 100-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26649756

ABSTRACT

Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies.


Subject(s)
Biodiversity , Candida albicans/genetics , Genetic Variation/genetics , Genome, Fungal/genetics , Genomics , Saccharomyces cerevisiae/genetics , Base Sequence , High-Throughput Nucleotide Sequencing
6.
Biotechnol Bioeng ; 112(6): 1250-62, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25580821

ABSTRACT

Genome-scale metabolic network models represent the link between the genotype and phenotype of the organism, which are usually reconstructed based on the genome sequence annotation and relevant biochemical and physiological information. These models provide a holistic view of the organism's metabolism, and constraint-based metabolic flux analysis methods have been used extensively to study genome-scale cellular metabolic networks. It is clear that the quality of the metabolic network model determines the outcome of the application. Therefore, it is critically important to determine the accuracy of a genome-scale model in describing the cellular metabolism of the modeled strain. However, because of the model complexity, which results in a system with very high degree of freedom, a good agreement between measured and computed substrate uptake rates and product secretion rates is not sufficient to guarantee the predictive capability of the model. To address this challenge, in this work we present a novel system identification based framework to extract the qualitative biological knowledge embedded in the quantitative simulation results from the metabolic network models. The extracted knowledge can serve two purposes: model validation during model development phase, which is the focus of this work, and knowledge discovery once the model is validated. This framework bridges the gap between the large amount of numerical results generated from genome-scale models and the knowledge that can be easily understood by biologists. The effectiveness of the proposed framework is demonstrated by its application to the analysis of two recently published genome-scale models of Scheffersomyces stipitis.


Subject(s)
Metabolic Networks and Pathways/genetics , Models, Biological , Saccharomycetales/genetics , Saccharomycetales/metabolism , Computational Biology/methods , Computer Simulation , Metabolic Flux Analysis , Systems Biology/methods
7.
Biotechnol Bioeng ; 112(3): 457-69, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25164099

ABSTRACT

Spathaspora passalidarum NN245 (NRRL-Y27907) is an ascomycetous yeast that displays a higher specific fermentation rate with xylose than with glucose. Previous studies have shown that its capacity for xylose fermentation increases while cell yield decreases with decreasing aeration. Aeration optimization plays a crucial role in maximizing bioethanol production from lignocellulosic hydrolysates. Here, we compared the kinetics of S. passalidarum NN245 and Scheffersomyces (Pichia) stipitis NRRL Y-7124 fermenting 15% glucose, 15% xylose, or 12% xylose plus 3% glucose under four different aeration conditions. The maximum specific fermentation rate for S. passalidarum was 0.153 g ethanol/g CDW · h with a yield of 0.448 g/g from 150 g/L xylose at an oxygen transfer rate of 2.47 mmol O2 /L h. Increasing the OTR to 4.27 mmol O2 /L h. decreased the ethanol yield from 0.46 to 0.42 g/g xylose while increasing volumetric ethanol productivity from 0.52 to 0.8 g/L h. Both yeasts had lower cells yields and higher ethanol yields when growing on xylose than when growing on glucose. Acetic acid accretions of both strains correlated positively with increasing aeration. S. passalidarum secreted lower amounts of polyols compared to S. stipitis under most circumstances. In addition, the composition of polyols differed: S. passalidarum accumulated mostly xylitol and R,R-2,3-butanediol (BD) whereas S. stipitis accumulated mostly xylitol and ribitol when cultivated in xylose or a mixture of 12% xylose and 3% glucose. R,R-2,3-BD accumulation by S. passalidarum during xylose fermentation can be as much as four times of that by S. stipitis, and R,R-2,3-BD is also the most abundant byproduct after xylitol. The ratios of polyols accumulated by the two species under different aeration conditions and the implications of these observations for strain and process engineering are discussed.


Subject(s)
Ethanol/metabolism , Oxygen/metabolism , Polymers/metabolism , Saccharomycetales/metabolism , Acetic Acid/analysis , Acetic Acid/metabolism , Biofuels , Ethanol/analysis , Fermentation , Glucose/metabolism , Kinetics , Polymers/analysis , Xylose/metabolism
8.
Bioresour Technol ; 164: 331-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24874873

ABSTRACT

Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to an empty fruit bunches (EFB) for ethanol production. SPORL facilitated delignification through lignin sulfonation and dissolution of xylan to result in a highly digestible substrate. The pretreated whole slurry was enzymatically saccharified at a solids loading of 18% using a relatively low cellulase loading of 15 FPU/g glucan and simultaneously fermented without detoxification using Saccharomyces cerevisiae of YRH400. An ethanol yield of 217 L/tonne EFB was achieved at titer of 32 g/L. Compared with literature studies, SPORL produced high ethanol yield and titer with much lower cellulase loading without detoxification.


Subject(s)
Biotechnology/methods , Cellulase/metabolism , Ethanol/metabolism , Fruit/chemistry , Sulfites/pharmacology , Arecaceae/chemistry , Fermentation/drug effects , Furaldehyde/metabolism , Polysaccharides/metabolism , Substrate Specificity/drug effects , Time Factors , Xylans/isolation & purification , Xylose/biosynthesis
9.
Curr Genet ; 60(3): 223-30, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24728863

ABSTRACT

We report the development of an efficient genetic transformation system for Lipomyces starkeyi based on a modified lithium acetate transformation protocol. L. starkeyi is a highly lipogenic yeast that grows on a wide range of substrates. The initial transformation rate for this species was extremely low, and required very high concentrations of DNA. A systematic approach for optimizing the protocol resulted in an increase in the transformation efficiency by four orders of magnitude. Important parameters included cell density, the duration of incubation and recovery periods, the heat shock temperature, and the concentration of lithium acetate and carrier DNA within the transformation mixture. We have achieved efficiencies in excess of 8,000 transformants/µg DNA, which now make it possible to screen libraries in the metabolic engineering of this yeast. Metabolic engineering based on this transformation system could improve lipogenesis and enable formation of higher value products.


Subject(s)
Gene Transfer Techniques , Lipomyces/genetics , Transformation, Genetic , Acetates , Lipomyces/growth & development , Lipomyces/metabolism , Plasmids/genetics , Temperature
10.
Appl Environ Microbiol ; 78(16): 5492-500, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22636012

ABSTRACT

Fermentation of cellulosic and hemicellulosic sugars from biomass could resolve food-versus-fuel conflicts inherent in the bioconversion of grains. However, the inability to coferment glucose and xylose is a major challenge to the economical use of lignocellulose as a feedstock. Simultaneous cofermentation of glucose, xylose, and cellobiose is problematic for most microbes because glucose represses utilization of the other saccharides. Surprisingly, the ascomycetous, beetle-associated yeast Spathaspora passalidarum, which ferments xylose and cellobiose natively, can also coferment these two sugars in the presence of 30 g/liter glucose. S. passalidarum simultaneously assimilates glucose and xylose aerobically, it simultaneously coferments glucose, cellobiose, and xylose with an ethanol yield of 0.42 g/g, and it has a specific ethanol production rate on xylose more than 3 times that of the corresponding rate on glucose. Moreover, an adapted strain of S. passalidarum produced 39 g/liter ethanol with a yield of 0.37 g/g sugars from a hardwood hydrolysate. Metabolome analysis of S. passalidarum before onset and during the fermentations of glucose and xylose showed that the flux of glycolytic intermediates is significantly higher on xylose than on glucose. The high affinity of its xylose reductase activities for NADH and xylose combined with allosteric activation of glycolysis probably accounts in part for its unusual capacities. These features make S. passalidarum very attractive for studying regulatory mechanisms enabling bioconversion of lignocellulosic materials by yeasts.


Subject(s)
Cellobiose/metabolism , Glucose/metabolism , Saccharomycetales/metabolism , Xylose/metabolism , Animals , Coleoptera/microbiology , Ethanol/metabolism , Fermentation , Metabolome , Saccharomycetales/isolation & purification
11.
FEMS Yeast Res ; 12(5): 582-97, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22487265

ABSTRACT

Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S. cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S. cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon flux to biomass production. Such a platform may then be enhanced with complementary metabolic engineering strategies that couple biomass production with high value-added chemical. Saccharomyces cerevisiae, expressing xylose reductase, xylitol dehydrogenase and xylulose kinase, from the native xylose-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to improve xylose utilization rates. The resulting S. cerevisiae strain was capable of rapid growth and fast xylose consumption producing only biomass and negligible amount of byproducts. Transcriptional profiling of this strain was employed to further elucidate the observed physiology confirms a strongly up-regulated glyoxylate pathway enabling respiratory metabolism. The resulting strain is a desirable platform for the industrial production of biomass-related products using xylose as a sole carbon source.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Biomass , Carbon/metabolism , D-Xylulose Reductase/genetics , D-Xylulose Reductase/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pichia/enzymology , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/growth & development
12.
Bioresour Technol ; 108: 134-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22285898

ABSTRACT

Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 °C for 90 min. Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis.


Subject(s)
Oxalates/chemistry , Xylose/isolation & purification , Zea mays/chemistry , Hydrolysis , Models, Chemical , Water/analysis
13.
Gene ; 492(1): 177-85, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22037608

ABSTRACT

In Scheffersomyces (Pichia) stipitis and related fungal species the genes for L-rhamnose catabolism RHA1, LRA2, LRA3 and LRA4 but not LADH are clustered. We find that located next to the cluster is a transcription factor, TRC1, which is conserved among related species. Our transcriptome analysis shows that all the catabolic genes and all genes of the cluster are up-regulated on L-rhamnose. Among genes that were also up-regulated on L-rhamnose were two transcription factors including the TRC1. In addition, in 16 out of the 32 analysed fungal species only RHA1, LRA2 and LRA3 are physically clustered. The clustering of RHA1, LRA3 and TRC1 is also conserved in species not closely related to S. stipitis. Since the LRA4 is often not part of the cluster and it has several paralogues in L-rhamnose utilising yeasts we analysed the function of one of the paralogues, LRA41 by heterologous expression and biochemical characterization. Lra41p has similar catalytic properties as the Lra4p but the transcript was not up-regulated on L-rhamnose. The RHA1, LRA2, LRA4 and LADH genes were previously characterised in S. stipitis. We expressed the L-rhamnonate dehydratase, Lra3p, in Saccharomyces cerevisiae, estimated the kinetic constants of the protein and showed that it indeed has activity with L-rhamnonate.


Subject(s)
Genes, Fungal , Multigene Family , Pichia/genetics , Rhamnose/metabolism , Aldehyde-Lyases/metabolism , Carbohydrate Dehydrogenases/metabolism , Conserved Sequence , Metabolism , Rhamnose/genetics , Transcription Factors , Up-Regulation
14.
Proc Natl Acad Sci U S A ; 108(32): 13212-7, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21788494

ABSTRACT

Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.


Subject(s)
Biofuels/microbiology , Fermentation/genetics , Fungi/genetics , Genomics/methods , Xylose/metabolism , Candida/genetics , Conserved Sequence/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Genotype , Phenotype , Phylogeny , Species Specificity
15.
Bioresour Technol ; 102(16): 7451-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21632241

ABSTRACT

Building on our laboratory-scale optimization, oxalic acid was used to pretreat corncobs on the pilot-scale. The hydrolysate obtained after washing the pretreated biomass contained 32.55g/l of xylose, 2.74g/l of glucose and low concentrations of inhibitors. Ethanol production, using Scheffersomyces stipitis, from this hydrolysate was 10.3g/l, which approached the predicted value of 11.9g/l. Diafiltration using a membrane system effectively reduced acetic acid in the hydrolysate, which increased the fermentation rate. The hemicellulose content of the recovered solids decreased from 27.86% before pretreatment to only 6.76% after pretreatment. Most of the cellulose remained in the pretreated biomass. The highest ethanol production after simultaneous saccharification and fermentation (SSF) of washed biomass with S. stipitis was 21.1g/l.


Subject(s)
Biofuels , Ethanol/chemical synthesis , Lignin/chemistry , Oxalic Acid/chemistry , Saccharomycetales/metabolism , Biomass , Cellulose/chemistry , Fermentation , Filtration , Polysaccharides/chemistry
16.
Appl Biochem Biotechnol ; 165(3-4): 814-22, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21671055

ABSTRACT

In scale-up, the potential of ethanol production by dilute sulfuric acid pretreatment using corncob was investigated. Pretreatments were performed at 170 °C with various acid concentrations ranging from 0% to 1.656% based on oven dry weight. Following pretreatment, pretreated biomass yield ranged from 59% to 67%. More than 90% of xylan was removed at 0.828% of sulfuric acid. At same pretreatment condition, the highest glucose yield obtained from pretreated biomass by enzymatic hydrolysis was about 76%, based on a glucan content of 37/100 g. In hydrolysate obtained by pretreatment, glucose concentration was low, while xylose concentration was significantly increased above 0.368% of sulfuric acid. At 1.656% of sulfuric acid, xylose and glucose concentration was highest. In subsequent, fermentation with hydrolysate, maximal ethanol yield was attained after 24 h with 0.368% of sulfuric acid. The fermentation efficiency of hydrolysate obtained by enzymatic hydrolysis reached a maximum of 75% at an acid charge of 0.368%.


Subject(s)
Biofuels , Ethanol/metabolism , Industrial Microbiology/methods , Lignin/metabolism , Pichia/enzymology , Sulfuric Acids/chemistry , Zea mays/metabolism , Biomass , Bioreactors , Fermentation , Glucose/biosynthesis , Xylose/metabolism , Zea mays/chemistry
17.
J Ind Microbiol Biotechnol ; 38(11): 1793-802, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21465179

ABSTRACT

This research examined cellulolytic effects of fungi and other microbes present in cured sausages on the strength and stability of regenerated cellulose casings (RCC) used in the sausage industry. Occasionally during the curing process, RCC would split or fail, thereby leading to loss of product. The fungus Penicillium sp. BT-F-1, which was isolated from fermented sausages, and other fungi, which were introduced to enable the curing process, produced small amounts of cellulases on RCC in both liquid and solid cultivations. During continued incubation for 15-60 days in solid substrate cultivation (SSC) on RCC support, the fungus Penicillium sp isolate BT-F-1 degraded the casings' dry weights by 15-50% and decreased their tensile strengths by ~75%. Similarly commercial cellulase(s) resulted in 20-50% degradation of RCC in 48 h. During incubation with Penicillium sp BT-F-1, the surface structure of RCC collapsed, resulting in loss of strength and stability of casings. The matrix of industrial RCC comprised 88-93% glucose polymer residues with 0.8-4% xylan impurities. Premature casing failure appeared to result from operating conditions in the manufacturing process that allowed xylan to build up in the extrusion bath. The sausage fungus Penicillium sp BT-F-1 produced xylanases to break down soft xylan pockets prior to slow cellulosic dissolution of RCC.


Subject(s)
Cellulases/metabolism , Cellulose/metabolism , Fermentation , Food Packaging , Meat Products/microbiology , Penicillium/enzymology , Animals , Cellulose/chemistry , Cellulose/ultrastructure , Fungi/enzymology , Fungi/isolation & purification , Penicillium/isolation & purification , Xylans/analysis
18.
Bioresour Technol ; 102(10): 5884-90, 2011 May.
Article in English | MEDLINE | ID: mdl-21377872

ABSTRACT

Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF) values during hydrolysis. Xylose and glucose concentrations in hydrolysates were highest with maleic acid. Oxalic acid gave the next highest followed by sulfuric acid. This ranking was particularly true at low CSF values. The concentrations of glucose and xylose increased with oxalic and sulfuric acid pretreatments as the CSF increased, but they never attained the levels observed with maleic acid. Among sulfuric, oxalic and maleic acid treatments, the amount of xylose released as xylooligosaccharide was highest with sulfuric acid. The fraction of xylooligosaccharide was lowest with the maleic acid and the oligosaccharide fraction with oxalic acid fell in between. Furfural and hydroxymethyl furfural levels were also highest with maleic acid. In subsequent fermentations with pretreated biomass, the ethanol concentration was maximal at 19.2g/l at CSF 1.9 when maleic acid was used as the pretreatment catalyst. This corresponded to an ethanol volumetric production rate of 0.27 g ethanol/l per h. This was the same condition showing the highest xylose production in following pretreatment with various acid catalysts. These findings suggest that maleic and oxalic dicarboxylic acids degrade hemicelluloses more efficiently than does sulfuric acid.


Subject(s)
Biomass , Lignin/metabolism , Catalysis , Dicarboxylic Acids/metabolism , Fermentation , Hydrolysis
19.
J Ind Microbiol Biotechnol ; 38(10): 1649-55, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21424687

ABSTRACT

Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-∆1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. D-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 g(xylitol)/g(xylose)) and volumetric productivity (0.18 g(xylitol)/g(xylose )l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.


Subject(s)
Pichia/enzymology , Xylitol/biosynthesis , Zea mays , Ammonium Sulfate/chemistry , Fermentation , Gluconates/chemistry , Phosphoric Acids/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pichia/growth & development , Xylose/metabolism
20.
Appl Biochem Biotechnol ; 163(5): 658-68, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20803261

ABSTRACT

Aqueous dilute acid pretreatments of corncob were conducted using cylindrical pressure vessels in an oil bath. Pretreatments were conducted in a temperature range of 160-190 °C with acid-solution-to-solid-corncob ratio of 2. The acid concentration (v/v) in the pretreatment solution was varied from 0% to 0.7%, depending on temperature. This gives acid charge on ovendry-weight corncob of 0-2.58%. It was found that optimal pretreatment temperature is between 160 and 170 °C based on total xylose and glucose yields and thermal energy consumption in pretreatment. At 170 °C and acid charge of 2.2% on cob, total glucose yield and xylose recovery were 97% and 75%, respectively, which resulted in an overall monomeric sugar recovery of about 88%. Xylose concentration in the hydrolysate was about 12%, with xylose-to-acetic-acid ratio of 8 and to furan (furfural and hydroxymethylfurfural) of about 15.


Subject(s)
Biotechnology/methods , Carbohydrates/chemistry , Zea mays/chemistry , Acetates/chemistry , Furans/chemistry , Glucose/chemistry , Xylose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...