Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37372327

ABSTRACT

Plant nuclear factor (NF-Y) is a transcriptional activating factor composed of three subfamilies: NF-YA, NF-YB, and NF-YC. These transcriptional factors are reported to function as activators, suppressors, and regulators under different developmental and stress conditions in plants. However, there is a lack of systematic research on the NF-Y gene subfamily in sugarcane. In this study, 51 NF-Y genes (ShNF-Y), composed of 9 NF-YA, 18 NF-YB, and 24 NF-YC genes, were identified in sugarcane (Saccharum spp.). Chromosomal distribution analysis of ShNF-Ys in a Saccharum hybrid located the NF-Y genes on all 10 chromosomes. Multiple sequence alignment (MSA) of ShNF-Y proteins revealed conservation of core functional domains. Sixteen orthologous gene pairs were identified between sugarcane and sorghum. Phylogenetic analysis of NF-Y subunits of sugarcane, sorghum, and Arabidopsis showed that ShNF-YA subunits were equidistant while ShNF-YB and ShNF-YC subunits clustered distinctly, forming closely related and divergent groups. Expression profiling under drought treatment showed that NF-Y gene members were involved in drought tolerance in a Saccharum hybrid and its drought-tolerant wild relative, Erianthus arundinaceus. ShNF-YA5 and ShNF-YB2 genes had significantly higher expression in the root and leaf tissues of both plant species. Similarly, ShNF-YC9 had elevated expression in the leaf and root of E. arundinaceus and in the leaf of a Saccharum hybrid. These results provide valuable genetic resources for further sugarcane crop improvement programs.


Subject(s)
Saccharum , Saccharum/genetics , Saccharum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Genome, Plant , Transcription Factors/genetics
2.
Mol Biol Rep ; 49(12): 11743-11754, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36201102

ABSTRACT

BACKGROUND: The rice cultivars ASD 16 and ADT 43 are the most popular high-yielding Indica rice cultivars in southern India. Despite their popularity very little is known about their genetic basis due to lack of studies on the complete genome. In the current study, efforts were made to identify alleles and SNP markers that differentiate the two contrasting rice genotypes, ASD 16 and ADT 43 for grain shape and starch content. METHODS AND RESULTS: The complete genome of bold grain ASD 16 and slender grain ADT 43 were sequenced via Illumina's paired-end sequencing and the reads obtained were mapped to the Oryza sativa Indica Group cultivar 93-11 reference genome. The grain size of rice is controlled by Quantitative Trait Loci (QTL) that has a robust effect on grain yield and quality. To gain insight into genes that controlling grain size and starch content, an in-silico analysis was performed by taking into account of 72 grain elongation and starch biosynthesis genes. The identified alleles were further validated in the whole genome sequencing data of 32 bold grain and 25 slender grain varieties that were retrieved from the 3 K rice genome project. CONCLUSION: An "A to G" polymorphism leading to SER 74 PRO was identified at the CDS position 220 of the An-1 gene, encoding bHLH domain-containing protein that regulates awn formation and increase in grain length. The non-synonymous substitutions such as A545C variant leading PHE 182 CYS in ADP Glucose Pyrophosphorylase large subunit IV (AGPL4) and C3094G variant leading to VAL 1032 LEU in Starch synthase IIIb (OsSSIIIb) were also identified in the starch biosynthesis genes. These identified allelic variants may contribute to the crop improvement programs in rice.


Subject(s)
Autism Spectrum Disorder , Oryza , Oryza/genetics , Oryza/metabolism , Starch/metabolism , Alleles , Polymorphism, Single Nucleotide/genetics , Edible Grain/genetics , Whole Genome Sequencing , Autism Spectrum Disorder/genetics
3.
Adv Bioinformatics ; 2015: 198214, 2015.
Article in English | MEDLINE | ID: mdl-26557141

ABSTRACT

Tobacco mosaic virus (TMV) infects several crops of economic importance (e.g., tomato) and remains as one of the major concerns to the farmers. TMV enters the host cell and produces the capping enzyme RNA polymerase. The viral genome replicates further to produce multiple mRNAs which encodes several proteins, including the coat protein and an RNA-dependent RNA polymerase (RdRp), as well as the movement protein. TMV replicase domain was chosen for the virtual screening studies against small molecules derived from ligand databases such as PubChem and ChemBank. Catalytic sites of the RdRp domain were identified and subjected to docking analysis with screened ligands derived from virtual screening LigandFit. Small molecules that interact with the target molecule at the catalytic domain region amino acids, GDD, were chosen as the best inhibitors for controlling the TMV replicase activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...