Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36720498

ABSTRACT

The NF-κB essential modulator NEMO is the core regulatory component of the inhibitor of κB kinase complex, which is a critical checkpoint in canonical NF-κB signaling downstream of innate and adaptive immune receptors. In response to various stimuli, such as TNF or IL-1ß, NEMO binds to linear or M1-linked ubiquitin chains generated by LUBAC, promoting its oligomerization and subsequent activation of the associated kinases. Here we show that M1-ubiquitin chains induce phase separation of NEMO and the formation of NEMO assemblies in cells after exposure to IL-1ß. Phase separation is promoted by both binding of NEMO to linear ubiquitin chains and covalent linkage of M1-ubiquitin to NEMO and is essential but not sufficient for its phase separation. Supporting the functional relevance of NEMO phase separation in signaling, a pathogenic NEMO mutant, which is impaired in both binding and linkage to linear ubiquitin chains, does not undergo phase separation and is defective in mediating IL-1ß-induced NF-κB activation.


Subject(s)
I-kappa B Kinase , NF-kappa B , NF-kappa B/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Signal Transduction , Ubiquitination , Ubiquitin/metabolism
2.
Angew Chem Int Ed Engl ; 58(48): 17351-17358, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31539186

ABSTRACT

Protein complex formation depends on the interplay between preorganization and flexibility of the binding epitopes involved. The design of epitope mimetics typically focuses on stabilizing a particular bioactive conformation, often without considering conformational dynamics, which limits the potential of peptidomimetics against challenging targets such as transcription factors. We developed a peptide-derived inhibitor of the NF-Y transcription factor by first constraining the conformation of an epitope through hydrocarbon stapling and then fine-tuning its flexibility. In the initial set of constrained peptides, a single non-interacting α-methyl group was observed to have a detrimental effect on complex stability. Biophysical characterization revealed how this methyl group affects the conformation of the peptide in its bound state. Adaption of the methylation pattern resulted in a peptide that inhibits transcription factor assembly and subsequent recruitment to the target DNA.


Subject(s)
CCAAT-Binding Factor/chemistry , Peptides/chemistry , Protein Multimerization/drug effects , Base Sequence , Binding Sites , Cross-Linking Reagents/chemistry , Crystallization , DNA/chemistry , Epitopes/chemistry , Humans , Macrocyclic Compounds/chemistry , Methylation , Molecular Dynamics Simulation , Peptidomimetics , Protein Binding , Protein Conformation , Thermodynamics
3.
Biochemistry ; 57(31): 4690-4699, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29791793

ABSTRACT

Although the Ras protein has been seen as a potential target for cancer therapy for the past 30 years, there was a tendency to consider it undruggable until recently. This has changed with the demonstration that small molecules with a specificity for (disease related mutants of) Ras can indeed be found, and some of these molecules form covalent adducts. A subgroup of these molecules can be characterized as competing with binding of the natural ligands GTP and GDP. Because of the distinct properties of Ras and related GTPases, in particular the very high nucleotide affinities and associated very low dissociation rates, assays for characterizing such molecules are not trivial. This is compounded by the fact that Ras family GTPases tend to be thermally unstable in the absence of a bound nucleotide. Here, we show that instead of using the unstable nucleotide-free Ras, the protein can be isolated as a 1:1 complex with a modified nucleotide (GDP-ß-methyl ester) with low affinity to Ras. With this nucleotide analogue bound to the protein, testing of inhibitors is made experimentally more convenient and we present assays that allow the rapid assessment of the kinetic constants describing the inhibition process.


Subject(s)
Biological Assay/methods , Nucleotides/analysis , ras Proteins/antagonists & inhibitors , Animals , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Humans , Kinetics , Nucleotides/pharmacology , Spectrometry, Fluorescence , ras Proteins/metabolism
4.
Sci Rep ; 7(1): 3687, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28623374

ABSTRACT

Simple reversible competitive inhibition of nucleotide binding of GTP to Ras family GTPases has long been recognized as an unlikely approach to manipulating the activity of such proteins for experimental or therapeutic purposes. This is due to the high affinity of GTP to GTPases coupled with high cellular GTP concentrations, but also to problems of specificity for the highly conserved binding sites in GTPases. A recent approach suggested that these problems might be overcome by using GDP derivatives that can undergo a covalent reaction with disease specific mutants, in particular addressing inhibition of KRasG12C using GDP equipped with an electrophilic group at the ß-phosphate. We show here that a major drawback to this approach is a loss of reversible affinity of such ß-modified derivatives for Ras of at least 104 compared to GTP and GDP. With the help of a thorough kinetic characterization, we show that this leads to covalent reaction times that are too slow to make the compounds attractive for intracellular use, but that generation of a hypothetical reactive GDP derivative that retains the high reversible affinity of GDP/GTP to Ras might be a viable alternative.


Subject(s)
Guanosine Triphosphate/metabolism , Nucleotides/metabolism , Nucleotides/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Acetamides/chemistry , Acetamides/metabolism , Acetamides/pharmacology , Guanosine Diphosphate/analogs & derivatives , Guanosine Diphosphate/chemistry , Guanosine Diphosphate/metabolism , Guanosine Diphosphate/pharmacology , Guanosine Triphosphate/chemistry , Kinetics , Models, Biological , Molecular Structure , Nucleotides/chemistry , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Recombinant Proteins , Son of Sevenless Proteins/chemistry , Son of Sevenless Proteins/metabolism , Structure-Activity Relationship
5.
Elife ; 52016 12 24.
Article in English | MEDLINE | ID: mdl-28012276

ABSTRACT

Stable kinetochore-microtubule attachment is essential for cell division. It requires recruitment of outer kinetochore microtubule binders by centromere proteins C and T (CENP-C and CENP-T). To study the molecular requirements of kinetochore formation, we reconstituted the binding of the MIS12 and NDC80 outer kinetochore subcomplexes to CENP-C and CENP-T. Whereas CENP-C recruits a single MIS12:NDC80 complex, we show here that CENP-T binds one MIS12:NDC80 and two NDC80 complexes upon phosphorylation by the mitotic CDK1:Cyclin B complex at three distinct CENP-T sites. Visualization of reconstituted complexes by electron microscopy supports this model. Binding of CENP-C and CENP-T to MIS12 is competitive, and therefore CENP-C and CENP-T act in parallel to recruit two MIS12 and up to four NDC80 complexes. Our observations provide a molecular explanation for the stoichiometry of kinetochore components and its cell cycle regulation, and highlight how outer kinetochore modules bridge distances of well over 100 nm.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Protein Multimerization , CDC2 Protein Kinase/metabolism , Cyclin B/metabolism , Cytoskeletal Proteins , Macromolecular Substances/ultrastructure , Microscopy, Electron , Phosphorylation , Protein Processing, Post-Translational
6.
Small ; 11(22): 2669-74, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25649737

ABSTRACT

Large supramolecular protein complexes, such as the molecular machinery involved in gene regulation, cell signaling, or cell division, are key in all fundamental processes of life. Detailed elucidation of structure and dynamics of such complexes can be achieved by reverse-engineering parts of the complexes in order to probe their interactions with distinctive binding partners in vitro. The exploitation of DNA nanostructures to mimic partially assembled supramolecular protein complexes in which the presence and state of two or more proteins are decisive for binding of additional building blocks is reported here. To this end, four-way DNA Holliday junction motifs bearing a fluorescein and a biotin tag, for tracking and affinity capture, respectively, are site-specifically functionalized with centromeric protein (CENP) C and CENP-T. The latter serves as baits for binding of the so-called KMN component, thereby mimicking early stages of the assembly of kinetochores, structures that mediate and control the attachment of microtubules to chromosomes in the spindle apparatus. Results from pull-down experiments are consistent with the hypothesis that CENP-C and CENP-T may bind cooperatively to the KMN network.


Subject(s)
Biomimetic Materials/chemical synthesis , Chromosomal Proteins, Non-Histone/chemistry , Kinetochores/chemistry , Multiprotein Complexes/chemistry , Binding Sites , Chromosomal Proteins, Non-Histone/ultrastructure , Kinetochores/ultrastructure , Materials Testing , Multiprotein Complexes/ultrastructure , Protein Binding
7.
Elife ; 3: e02978, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25006165

ABSTRACT

Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore-centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers.DOI: http://dx.doi.org/10.7554/eLife.02978.001.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , GTP Phosphohydrolases/metabolism , Kinetochores/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Crystallography, X-Ray , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , HeLa Cells , Humans , Kinetochores/chemistry , Models, Biological , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Folding , Protein Stability , Protein Structure, Quaternary , Protein Subunits , RNA, Small Interfering/genetics , Sequence Homology, Amino Acid
8.
Methods Mol Biol ; 849: 85-99, 2012.
Article in English | MEDLINE | ID: mdl-22528085

ABSTRACT

The microtubule-associated protein Tau plays a physiological role of stabilizing neuronal microtubules by binding to their lateral surface. Tau belongs to the category of natively unfolded protein as it shows typical features of random coil, as analyzed by various biophysical techniques. In cells, it is subjected to several posttranslational modifications (e.g., phosphorylation, cleavage, ubiquitination, and glycosylation). In neurodegenerative diseases, Tau forms insoluble aggregates called paired helical filaments (PHFs). We have applied fluorescence resonance energy transfer (FRET) to examine the conformations of soluble Tau. We created a series of Tau mutants, each carrying one tryptophan and one cysteine (labeled by IEADANS). This made it possible to measure the distance between these FRET pairs placed in different domains of Tau. This approach enables one to analyze the global folding of soluble Tau and its alteration upon phosphorylation and denaturation.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , tau Proteins/chemistry , Guanidine/pharmacology , Phosphorylation , Protein Conformation/drug effects , Protein Unfolding/drug effects
9.
PLoS Biol ; 7(2): e34, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19226187

ABSTRACT

Alzheimer disease is characterized by abnormal protein deposits in the brain, such as extracellular amyloid plaques and intracellular neurofibrillary tangles. The tangles are made of a protein called tau comprising 441 residues in its longest isoform. Tau belongs to the class of natively unfolded proteins, binds to and stabilizes microtubules, and partially folds into an ordered beta-structure during aggregation to Alzheimer paired helical filaments (PHFs). Here we show that it is possible to overcome the size limitations that have traditionally hampered detailed nuclear magnetic resonance (NMR) spectroscopy studies of such large nonglobular proteins. This is achieved using optimal NMR pulse sequences and matching of chemical shifts from smaller segments in a divide and conquer strategy. The methodology reveals that 441-residue tau is highly dynamic in solution with a distinct domain character and an intricate network of transient long-range contacts important for pathogenic aggregation. Moreover, the single-residue view provided by the NMR analysis reveals unique insights into the interaction of tau with microtubules. Our results establish that NMR spectroscopy can provide detailed insight into the structural polymorphism of very large nonglobular proteins.


Subject(s)
Alzheimer Disease/genetics , tau Proteins/chemistry , Alzheimer Disease/metabolism , Amino Acid Sequence , Animals , Axons/metabolism , Humans , Microtubules/chemistry , Microtubules/metabolism , Molecular Sequence Data , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Protein Folding , Protein Isoforms , Protein Structure, Secondary , Swine , tau Proteins/genetics , tau Proteins/metabolism
10.
Biochemistry ; 47(41): 10841-51, 2008 Oct 14.
Article in English | MEDLINE | ID: mdl-18803399

ABSTRACT

Transition metals have been frequently recognized as risk factors in neurodegenerative disorders, and brain lesions associated with Alzheimer's disease are rich in Fe(III), Zn(II), and Cu(II). By using different biophysical techniques (nuclear magnetic resonance, circular dichroism, light scattering, and microcalorimetry), we have structurally characterized the binding of Cu(II) to a 198 amino acid fragment of the protein Tau that can mimic both the aggregation behavior and microtubule binding properties of the full-length protein. We demonstrate that Tau can specifically bind one Cu(II) ion per monomer with a dissociation constant in the micromolar range, an affinity comparable to the binding of Cu(II) to other proteins involved in neurodegenerative diseases. NMR spectroscopy showed that two short stretches of residues, (287)VQSKCGS (293) and (310)YKPVDLSKVTSKCGS (324), are primarily involved in copper binding, in agreement with mutational analysis. According to circular dichroism and NMR spectroscopy, Tau remains largely disordered upon binding to Cu(II), although a limited amount of aggregation is induced.


Subject(s)
Copper/metabolism , tau Proteins/metabolism , Amino Acid Sequence , Calorimetry , Chromatography, Gel , Humans , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , tau Proteins/chemistry
11.
Biochemistry ; 47(40): 10526-39, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18783251

ABSTRACT

The abnormal aggregation of the microtubule-associated protein Tau into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer disease (AD). Tau in solution behaves as a natively unfolded or intrinsically disordered protein while its aggregation is based on the partial structural transition from random coil to beta-structure. Our aim is to understand in more detail the unfolded nature of Tau, to investigate the aggregation of Tau under different conditions and the molecular interactions of Tau in filaments. We show that soluble Tau remains natively unfolded even when its net charge is minimized, in contrast to other unfolded proteins. The CD signature of the random-coil character of Tau shows no major change over wide variations in charge (pH), ionic strength, solvent polarity, and denaturation. Thus there is no indication of a hydrophobicity-driven collapse, neither in the microtubule-binding repeat domain constructs nor in full-length Tau. This argues that the lack of hydrophobic residues but not the net charge accounts for unfolded nature of soluble Tau. The aggregation of the Tau repeat domain (that forms the core of PHFs) in the presence of nucleating polyanionic cofactors (heparin) is efficient in a range of buffers and pH values between approximately 5 and 10 but breaks down beyond that range, presumably because the pattern of charged interactions disappears. Similarly, elevated ionic strength attenuates aggregation, and the temperature dependence is bell-shaped with an optimum around 50 degrees C. Reporter dyes ThS and ANS record the aggregation process but sense different states (cross-beta-structure vs hydrophobic pockets) with different kinetics. Preformed PHFs are surprisingly labile and can be disrupted by denaturants at rather low concentration ( approximately 1.0 M GdnHCl), much less than required to denature globular proteins. Partial disaggregation of Tau filaments at extreme pH values monitored by CD and EM indicate the importance of salt bridges in filament formation. In contrast, Tau filaments are remarkably resistant to high temperature and high ionic strength. Overall, the stability of PHFs appears to depend mainly on directed salt bridges with contributions from hydrophobic interactions as well, consistent with a recent structural model of the PHF core derived from solid state NMR (Andronesi, O. C., von Bergen, M., Biernat, J., Seidel, K., Griesinger, C., Mandelkow, E., and Baldus, M. (2008) Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.


Subject(s)
Alzheimer Disease/metabolism , Neurofilament Proteins/chemistry , tau Proteins/chemistry , Circular Dichroism , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Models, Biological , Neurofilament Proteins/ultrastructure , Protein Folding , Solvents/chemistry , Temperature , tau Proteins/ultrastructure
12.
J Biol Chem ; 283(46): 32066-76, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-18725412

ABSTRACT

Tau, a neuronal microtubule-associated protein that aggregates in Alzheimer disease is a natively unfolded protein. In solution, Tau adopts a "paperclip" conformation, whereby the N- and C-terminal domains approach each other and the repeat domain ( Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H. J., and Mandelkow, E. (2006) Biochemistry 45, 2283-2293 ). In AD, Tau is in a hyperphosphorylated state. The consequences for microtubule binding or aggregation are a matter of debate. We therefore tested whether phosphorylation alters the conformation of Tau. To avoid the ambiguities of heterogeneous phosphorylation we cloned "pseudo-phosphorylation" mutants of Tau where combinations of Ser or Thr residues were converted into Glu. These mutations were combined with FRET pairs inserted in different locations to allow distance measurements. The results show that the paperclip conformation becomes tighter or looser, depending on the pseudo-phosphorylation state. In particular, pseudo-phosphorylation at the epitope of the diagnostic antibody AT8* (S199E + S202E + T205E) moves the N-terminal domain away from the C-terminal domain. Pseudo-phosphorylation at the PHF1 epitope (S396E + S404E) moves the C-terminal domain away from the repeat domain. In both cases the paperclip conformation is opened up. By contrast, the combination of AT8* and PHF1 sites leads to compaction of the paperclip, such that the N-terminus approaches the repeat domain. The compaction becomes even stronger by combining pseudo-phosphorylated AT8*, AT100, and PHF1 epitopes. This is accompanied by a strong increase in the reaction with conformation-dependent antibody MC1, suggesting the generation of a pathological conformation characteristic for Tau in AD. Furthermore, the compact paperclip conformation enhances the aggregation to paired helical filaments but has little influence on microtubule interactions. The data provide a framework for the global folding of Tau dependent on proline-directed phosphorylation in the domains flanking the repeats and the consequences for pathological properties of Tau.


Subject(s)
Alzheimer Disease/pathology , Antibodies/immunology , Epitopes/metabolism , Proline/metabolism , Protein Folding , tau Proteins/chemistry , tau Proteins/metabolism , Circular Dichroism , Epitopes/immunology , Guanidine/pharmacology , Microscopy, Electron, Transmission , Mutation/genetics , Phosphorylation , Proline/genetics , Protein Conformation , Protein Denaturation/drug effects , Protein Structure, Secondary , tau Proteins/ultrastructure
13.
Biochemistry ; 45(7): 2283-93, 2006 Feb 21.
Article in English | MEDLINE | ID: mdl-16475817

ABSTRACT

The microtubule-associated protein tau stabilizes microtubules in its physiological role, whereas it forms insoluble aggregates (paired helical filaments) in Alzheimer's disease. Soluble tau is considered a natively unfolded protein whose residual folding and intramolecular interactions are largely undetermined. In this study, we have applied fluorescence resonance energy transfer (FRET) and electron paramagnetic resonance (EPR) to examine the proximity and flexibility of tau domains and the global folding. FRET pairs spanning the tau molecule were created by inserting tryptophans (donor) and cysteines (labeled with IAEDANS as an acceptor) by site-directed mutagenesis. The observed FRET distances were significantly different from those expected for a random coil. Notably, the C-terminal end of tau folds over into the vicinity of the microtubule-binding repeat domain, the N-terminus remains outside the FRET distance of the repeat domain, yet both ends of the molecule approach one another. The interactions between the domains were obliterated by denaturation in GdnHCl. Paramagnetic spin-labels attached in various domains of tau were analyzed by EPR and exhibited a high mobility throughout. The data indicate that tau retains some global folding even in its "natively unfolded" state, combined with the high flexibility of the chain.


Subject(s)
tau Proteins/chemistry , Circular Dichroism , Electron Spin Resonance Spectroscopy , Fluorescence Resonance Energy Transfer , Mutagenesis, Site-Directed , Naphthalenesulfonates/chemistry , Protein Folding , Solutions , tau Proteins/genetics
14.
Biochemistry ; 44(49): 16192-202, 2005 Dec 13.
Article in English | MEDLINE | ID: mdl-16331979

ABSTRACT

CD4 is an important component of the immune system and is also the cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. Constructs consisting of all four extracellular domains of human CD4 as well as the first two domains (CD4D12) have previously been expressed and characterized. All of the gp120-binding residues are located within the first N-terminal domain (D1) of CD4. To date, it has not been possible to obtain domain D1 alone in a soluble and active form. Most residues in CD4 that interact with gp120 lie within the region 21-64 of domain D1 of CD4. On the basis of these observations and analysis of the crystal structure of CD4D12, a mutational strategy was designed to express CD4D1 and region 21-64 of CD4 (CD4PEP1) in Escherichia coli. K(D) values for the binding of CD4 analogues described above to gp120 were measured using a Biacore-based solution-phase competition binding assay. Measured K(D) values were 15 nM, 40 nM, and 26 microM for CD4D12, CD4D1, and CD4PEP1, respectively. All of the proteins interact with gp120 and are able to expose the 17b-binding epitope of gp120. Structural content was determined using CD and proteolysis. Both CD4D1 and CD4PEP1 were partially structured and showed an enhanced structure in the presence of the osmolyte sarcosine. The aggregation behavior of all of the proteins was characterized. While CD4D1 and CD4PEP1 did not aggregate, CD4D12 formed amyloid fibrils at neutral pH within a week at 278 K. These CD4 derivatives should be useful tools in HIV vaccine design and entry inhibition studies.


Subject(s)
CD4 Antigens/chemistry , HIV Envelope Protein gp120/metabolism , Protein Conformation , CD4 Antigens/genetics , CD4 Antigens/metabolism , HIV-1/metabolism , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...