Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
2.
J Exp Clin Cancer Res ; 43(1): 148, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773631

ABSTRACT

BACKGROUND: Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS: To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS: We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS: These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.


Subject(s)
Exportin 1 Protein , Hodgkin Disease , Karyopherins , Receptors, Cytoplasmic and Nuclear , Humans , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Animals , Mice , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Hodgkin Disease/metabolism , Hodgkin Disease/genetics , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP110 Heat-Shock Proteins/genetics , Cell Line, Tumor , Mediastinal Neoplasms/drug therapy , Mediastinal Neoplasms/metabolism , Mediastinal Neoplasms/pathology , Mediastinal Neoplasms/genetics , Xenograft Model Antitumor Assays , Triazoles/pharmacology , Triazoles/therapeutic use , Hydrazines/pharmacology , Hydrazines/therapeutic use , Female , STAT6 Transcription Factor/metabolism , Molecular Targeted Therapy
3.
Cancers (Basel) ; 15(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36765939

ABSTRACT

Heat-shock proteins (HSPs) are powerful chaperones that provide support for cellular functions under stress conditions but also for the homeostasis of basic cellular machinery. All cancer cells strongly rely on HSPs, as they must continuously adapt to internal but also microenvironmental stresses to survive. In solid tumors, HSPs have been described as helping to correct the folding of misfolded proteins, sustain oncogenic pathways, and prevent apoptosis. Leukemias and lymphomas also overexpress HSPs, which are frequently associated with resistance to therapy. HSPs have therefore been proposed as new therapeutic targets. Given the specific biology of hematological malignancies, it is essential to revise their role in this field, providing a more adaptable and comprehensive picture that would help design future clinical trials. To that end, this review will describe the different pathways and functions regulated by HSP27, HSP70, HSP90, and, not least, HSP110 in leukemias and lymphomas.

4.
Oncotarget ; 12(15): 1564-1565, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34316335

ABSTRACT

[This corrects the article DOI: 10.18632/oncotarget.3522.].

5.
Cancers (Basel) ; 12(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007990

ABSTRACT

The XPO1 gene encodes exportin 1 (XPO1) that controls the nuclear export of cargo proteins and RNAs. Almost 25% of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) cases harboured a recurrent XPO1 point mutation (NM_003400, chr2:g61718472C>T) resulting in the E571K substitution within the hydrophobic groove of the protein, the site of cargo binding. We investigated the impact of the XPO1E571K mutation using PMBL/cHL cells having various XPO1 statuses and CRISPR-Cas9-edited cells in which the E571K mutation was either introduced or knocked-out. We first confirmed that the mutation was present in both XPO1 mRNA and protein. We observed that the mutation did not modify the export capacity but rather the subcellular localisation of XPO1 itself. In particular, mutant XPO1 bound to importin ß1 modified the nuclear export/import dynamics of relevant cargoes.

6.
Cancers (Basel) ; 12(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932806

ABSTRACT

Myeloproliferative neoplasms (MPN) are a group of clonal disorders that affect hematopoietic stem/progenitor cells. These disorders are often caused by oncogenic driver mutations associated with persistent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. While JAK inhibitors, such as ruxolitinib, reduce MPN-related symptoms in myelofibrosis, they do not influence the underlying cause of the disease and are not curative. Due to these limitations, there is a need for alternative therapeutic strategies and targets. Heat shock proteins (HSPs) are cytoprotective stress-response chaperones involved in protein homeostasis and in many critical pathways, including inflammation. Over the last decade, several research teams have unraveled the mechanistic connection between STAT signaling and several HSPs, showing that HSPs are potential therapeutic targets for MPN. These HSPs include HSP70, HSP90 (chaperoning JAK2) and both HSP110 and HSP27, which are key factors modulating STAT3 phosphorylation status. Like the HSPs, the PD-1/PD-L1 signaling pathway has been widely studied in cancer, but the importance of PD-L1-mediated immune escape in MPN was only recently reported. In this review, we summarize the role of HSPs and PD-1/PD-L1 signaling, the modalities of their experimental blockade, and the effect in MPN. Finally, we discuss the potential of these emerging targeted approaches in MPN therapy.

7.
Biochem Biophys Res Commun ; 530(3): 520-526, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32620236

ABSTRACT

PIK3CA-related overgrowth spectrum is caused by mosaicism mutations in the PIK3CA gene. These mutations, which are also observed in various types of cancer, lead to a constitutive activation of the PI3K/AKT/mTOR pathway, increasing cell proliferation. Heat shock transcription factor 1 (HSF1) is the major stress-responsive transcription factor. Recent findings indicate that AKT phosphorylates and activates HSF1 independently of heat-shock in breast cancer cells. Here, we aimed to investigate the role of HSF1 in PIK3CA-related overgrowth spectrum. We observed a higher rate of proliferation and increased phosphorylation of AKT and p70S6K in mutant fibroblasts than in control cells. We also found elevated phosphorylation and activation of HSF1, which is directly correlated to AKT activation. Specific AKT inhibitors inhibit HSF1 phosphorylation as well as HSF1-dependent gene transcription. Finally, we demonstrated that targeting HSF1 with specific inhibitors reduced the proliferation of mutant cells. As there is currently no curative treatment for PIK3CA-related overgrowth spectrum, our results identify HSF1 as a new potential therapeutic target.


Subject(s)
Cell Proliferation/drug effects , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Discovery , Heat Shock Transcription Factors/antagonists & inhibitors , Lipoma/metabolism , Musculoskeletal Abnormalities/metabolism , Nevus/metabolism , Vascular Malformations/metabolism , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Heat Shock Transcription Factors/metabolism , Humans , Lipoma/drug therapy , Lipoma/genetics , Lipoma/pathology , Molecular Targeted Therapy , Musculoskeletal Abnormalities/drug therapy , Musculoskeletal Abnormalities/genetics , Musculoskeletal Abnormalities/pathology , Mutation , Nevus/drug therapy , Nevus/genetics , Nevus/pathology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Vascular Malformations/drug therapy , Vascular Malformations/genetics , Vascular Malformations/pathology
8.
Cell Death Differ ; 27(1): 117-129, 2020 01.
Article in English | MEDLINE | ID: mdl-31068676

ABSTRACT

Pro-survival stress-inducible chaperone HSP110 is the only HSP for which a mutation has been found in a cancer. Multicenter clinical studies demonstrated a direct association between HSP110 inactivating mutation presence and excellent prognosis in colorectal cancer patients. Here, we have combined crystallographic studies on human HSP110 and in silico modeling to identify HSP110 inhibitors that could be used in colorectal cancer therapy. Two molecules (foldamers 33 and 52), binding to the same cleft of HSP110 nucleotide-binding domain, were selected from a chemical library (by co-immunoprecipitation, AlphaScreening, Interference-Biolayer, Duo-link). These molecules block HSP110 chaperone anti-aggregation activity and HSP110 association to its client protein STAT3, thereby inhibiting STAT3 phosphorylation and colorectal cancer cell growth. These effects were strongly decreased in HSP110 knockdown cells. Foldamer's 33 ability to inhibit tumor growth was confirmed in two colorectal cancer animal models. Although tumor cell death (apoptosis) was noted after treatment of the animals with foldamer 33, no apparent toxicity was observed, notably in epithelial cells from intestinal crypts. Taken together, we identified the first HSP110 inhibitor, a possible drug-candidate for colorectal cancer patients whose unfavorable outcome is associated to HSP110.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , HSP110 Heat-Shock Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/toxicity , Cell Proliferation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Crystallography, X-Ray , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Humans , Mice , Models, Molecular , STAT3 Transcription Factor/metabolism
9.
Cancers (Basel) ; 12(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861612

ABSTRACT

While cells from multicellular organisms are dependent upon exogenous signals for their survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within the cell. This general control of protein quality involves the expression and the activity of molecular chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5 transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell proliferation, survival) and for the microenvironmental immune cell compartment (differentiation, activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70, HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which HSP would be the best candidate for such a strategy.

10.
J Mol Med (Berl) ; 97(5): 633-645, 2019 05.
Article in English | MEDLINE | ID: mdl-30843084

ABSTRACT

Cohen syndrome (CS) is a rare genetic disorder due to mutations in VPS13B gene. Among various clinical and biological features, CS patients suffer from inconsistent neutropenia, which is associated with recurrent but minor infections. We demonstrate here that this neutropenia results from an exaggerate rate of neutrophil apoptosis. Besides this increased cell death, which occurs in the absence of any endoplasmic reticulum stress or defect in neutrophil elastase (ELANE) expression or localization, all neutrophil functions appeared to be normal. We showed a disorganization of the Golgi apparatus in CS neutrophils precursors, that correlates with an altered glycosylation of ICAM-1 in these cells, as evidenced by a migration shift of the protein. Furthermore, a striking decrease in the expression of SERPINB1 gene, which encodes a critical component of neutrophil survival, was detected in CS neutrophils. These abnormalities may account for the excessive apoptosis of neutrophils leading to neutropenia in CS. KEY MESSAGES: Cohen syndrome patients' neutrophils display normal morphology and functions. Cohen syndrome patients' neutrophils have an increased rate of spontaneous apoptosis compared to healthy donors' neutrophils. No ER stress or defective ELA2 expression or glycosylation was observed in Cohen syndrome patients' neutrophils. SerpinB1 expression is significantly decreased in Cohen syndrome neutrophils as well as in VPS13B-deficient cells.


Subject(s)
Apoptosis , Fingers/abnormalities , Intellectual Disability/genetics , Microcephaly/genetics , Muscle Hypotonia/genetics , Myopia/genetics , Neutropenia/genetics , Neutrophils/pathology , Obesity/genetics , Retinal Degeneration/genetics , Serpins/genetics , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/complications , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Down-Regulation , Female , Fingers/pathology , Humans , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Microcephaly/complications , Microcephaly/pathology , Middle Aged , Muscle Hypotonia/complications , Muscle Hypotonia/pathology , Mutation , Myopia/complications , Myopia/pathology , Neutropenia/etiology , Neutropenia/pathology , Neutrophils/metabolism , Obesity/complications , Obesity/pathology , Retinal Degeneration/complications , Retinal Degeneration/pathology , Young Adult
11.
Blood ; 132(5): 510-520, 2018 08 02.
Article in English | MEDLINE | ID: mdl-29871863

ABSTRACT

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive lymphoproliferative disorder involving chronic NF-κB activation. Several mutations in the BCR and MyD88 signaling pathway components, such as MyD88 L265P, are implicated in this aberrant activation. Among heat shock proteins, HSP110 has recently been identified as a prosurvival and/or proliferation factor in many cancers, but its role in ABC-DLBCL survival mechanisms remained to be established. We observed that short hairpin RNA-mediated HSP110 silencing decreased the survival of several ABC-DLBCL cell lines and decreased immunoglobulin M-MyD88 co-localization and subsequent NF-κB signaling. Conversely, overexpression of HSP110 in ABC-DLBCL or non-DLBCL cell lines increased NF-κB signaling, indicating a tight interplay between HSP110 and the NF-κB pathway. By using immunoprecipitation and proximity ligation assays, we identified an interaction between HSP110 and both wild-type MyD88 and MyD88 L265P. HSP110 stabilized both MyD88 forms with a stronger effect on MyD88 L265P, thus facilitating chronic NF-κB activation. Finally, HSP110 expression was higher in lymph node biopsies from patients with ABC-DLBCL than in normal reactive lymph nodes, and a strong correlation was found between the level of HSP110 and MyD88. In conclusion, we identified HSP110 as a regulator of NF-κB signaling through MyD88 stabilization in ABC-DLBCL. This finding reveals HSP110 as a new potential therapeutic target in ABC-DLBCL.


Subject(s)
HSP110 Heat-Shock Proteins/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Myeloid Differentiation Factor 88/chemistry , NF-kappa B/metabolism , Cohort Studies , HSP110 Heat-Shock Proteins/genetics , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , Protein Stability , Signal Transduction , Tumor Cells, Cultured
12.
Methods Mol Biol ; 1709: 371-396, 2018.
Article in English | MEDLINE | ID: mdl-29177673

ABSTRACT

Heat shock protein 70 (Hsp70) is the most ubiquitous stress-inducible chaperone. It accumulates in the cells in response to a wide variety of physiological and environmental insults including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Intracellular Hsp70 is viewed as a cytoprotective protein. Indeed, this protein can inhibit key effectors of the apoptotic and autophagy machineries. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and can even cause their complete involution. However, HSP70 is also found in the extra-cellular space where it may signal via membrane receptors or endosomes to alter gene transcription and cellular function. Overall, Hsp70 extracellular function is believed to be immnunogenic and the term chaperokine to define the extracellular chaperones such as Hsp70 has been advanced. In this chapter the knowledge to date, as well as some emerging paradigms about the intra- and extra-cellular functions of Hsp70, are presented. The strategies targeting Hsp70 that are being developed in cancer therapy will also be discussed.


Subject(s)
Antineoplastic Agents/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Immunotherapy/methods , Neoplasms/metabolism , Antineoplastic Agents/therapeutic use , HSP70 Heat-Shock Proteins/immunology , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/immunology , Neoplasms/drug therapy , Neoplasms/therapy
13.
Oncotarget ; 8(23): 37681-37693, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28445150

ABSTRACT

Inwardly rectifying potassium channels (Kir), and especially the barium-sensitive Kir4.1 encoded by KCNJ10, are key regulators of glial functions. A lower expression or mislocation of Kir4.1 is detected in human brain tumors. MicroRNAs participate in the regulation of ionic channels and associated neurologic disorders. Here, we analyze effects of miR-5096 on the Kir4.1 expression and function in two glioblastoma cell lines, U87 and U251. Using whole-cell patch-clamp and western-blot analysis, we show that cell loading with miR-5096 decreases the Kir4.1 protein level and associated K+ current. Cell treatment with barium, a Kir4.1 blocker, or cell loading of miR-5096 both increase the outgrowth of filopodia in glioma cells, as observed by time-lapse microscopy. Knocking-down Kir4.1 expression by siRNA transfection similarly increased both filopodia formation and invasiveness of glioma cells as observed in Boyden chamber assay. MiR-5096 also promotes the release of extracellular vesicles by which it increases its own transfer to surrounding cells, in a Kir4.1-dependent manner in U251 but not in U87. Altogether, our results validate Kir4.1 as a miR-5096 target to promote invasion of glioblastoma cells. Our data highlight the complexity of microRNA effects and the role of K+ channels in cancer.


Subject(s)
Glioblastoma/metabolism , MicroRNAs/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Cell Movement , Cells, Cultured , Humans , Pentamidine , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/pharmacology , Transfection
14.
JCI Insight ; 2(6): e90531, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28352659

ABSTRACT

Better identification of severe acute graft-versus-host disease (GvHD) may improve the outcome of this life-threatening complication of allogeneic hematopoietic stem cell transplantation. GvHD induces tissue damage and the release of damage-associated molecular pattern (DAMP) molecules. Here, we analyzed GvHD patients (n = 39) to show that serum heat shock protein glycoprotein 96 (Gp96) could be such a DAMP molecule. We demonstrate that serum Gp96 increases in gastrointestinal GvHD patients and its level correlates with disease severity. An increase in Gp96 serum level was also observed in a mouse model of acute GvHD. This model was used to identify complement C3 as a main partner of Gp96 in the serum. Our biolayer interferometry, yeast two-hybrid and in silico modeling data allowed us to determine that Gp96 binds to a complement C3 fragment encompassing amino acids 749-954, a functional complement C3 hot spot important for binding of different regulators. Accordingly, in vitro experiments with purified proteins demonstrate that Gp96 downregulates several complement C3 functions. Finally, experimental induction of GvHD in complement C3-deficient mice confirms the link between Gp96 and complement C3 in the serum and with the severity of the disease.


Subject(s)
Complement C3/metabolism , Graft vs Host Disease/blood , Membrane Glycoproteins/blood , Molecular Chaperones/blood , Adolescent , Adult , Animals , Complement Activation , Hematopoietic Stem Cell Transplantation , Humans , Mice , Middle Aged , Young Adult
15.
Oncotarget ; 7(45): 73925-73934, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27661112

ABSTRACT

Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.


Subject(s)
Endothelial Cells/metabolism , Gap Junctions/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , MicroRNAs/genetics , Cell Communication/genetics , Cell Line, Tumor , Gene Expression , Glioblastoma/pathology , Humans , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , RNA Transport
16.
Oncoimmunology ; 5(7): e1170264, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27622020

ABSTRACT

HSP110 is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps the cells to survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently showed that colorectal cancer (CRC) patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110 inactivating mutation (HSP110DE9). In this work, we have used patients' biopsies and human CRC cells grown in vitro and in vivo (xenografts) to demonstrate that (1) HSP110 is secreted by CRC cells and that the amount of this extracellular HSP110 is strongly decreased by the expression of the mutant HSP110DE9, (2) Supernatants from CRC cells overexpressing HSP110 or purified recombinant human HSP110 (LPS-free) affect macrophage differentiation/polarization by favoring a pro-tumor, anti-inflammatory profile, (3) Conversely, inhibition of HSP110 (expression of siRNA, HSP110DE9 or immunodepletion) induced the formation of macrophages with a cytotoxic, pro-inflammatory profile. (4) Finally, this effect of extracellular HSP110 on macrophages seems to implicate TLR4. These results together with the fact that colorectal tumor biopsies with HSP110 high were infiltrated with macrophages with a pro-tumoral profile while those with HSP110 low were infiltrated with macrophages with a cytotoxic profile, suggest that the effect of extracellular HSP110 function on macrophages may also contribute to the poor outcomes associated with HSP110 expression.

17.
Oncotarget ; 7(19): 28160-8, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27058413

ABSTRACT

Gap junctional communication between cancer cells and blood capillary cells is crucial to tumor growth and invasion. Gap junctions may transfer microRNAs (miRs) among cells. Here, we explore the impact of such a transfer in co-culture assays, using the antitumor miR-145 as an example. The SW480 colon carcinoma cells form functional gap junction composed of connexin-43 (Cx43) with human microvascular endothelial cells (HMEC). When HMEC are loaded with miR-145-5p mimics, the miR-145 level drastically increases in SW480. The functional inhibition of gap junctions, using either a gap channel blocker or siRNA targeting Cx43, prevents this increase. The transfer of miR-145 also occurs from SW480 to HMEC but not in non-contact co-cultures, excluding the involvement of soluble exosomes. The miR-145 transfer to SW480 up-regulates their Cx43 expression and inhibits their ability to promote angiogenesis. Our results indicate that the gap junctional communication can inhibit tumor growth by transferring miRs from one endothelial cell to neighboring tumor cells. This "bystander" effect could find application in cancer therapy.


Subject(s)
Cell Communication/physiology , Colonic Neoplasms/metabolism , Endothelial Cells/metabolism , Gap Junctions/metabolism , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , Cell Line, Tumor , Coculture Techniques , Colonic Neoplasms/pathology , Humans , Neovascularization, Pathologic/pathology
18.
Food Microbiol ; 53(Pt A): 51-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26611169

ABSTRACT

Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1ß and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains.


Subject(s)
Antibiosis , Biofilms/growth & development , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/physiology , Limosilactobacillus fermentum/growth & development , Limosilactobacillus fermentum/physiology , Probiotics , Animals , Bile/microbiology , Culture Media/chemistry , Escherichia coli/physiology , Humans , Immunity, Innate , Immunomodulation , Interleukin-10/biosynthesis , Limosilactobacillus fermentum/immunology , Lactobacillus plantarum/immunology , Monocytes/immunology , Mucus/microbiology , Salmonella enterica/physiology , Tumor Necrosis Factor-alpha/biosynthesis , Zebrafish
19.
Hum Mol Genet ; 24(23): 6603-13, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26358774

ABSTRACT

Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity.


Subject(s)
Adipogenesis , Body Fat Distribution , Diabetes Mellitus, Type 2/physiopathology , Fingers/abnormalities , Insulin/physiology , Intellectual Disability/physiopathology , Microcephaly/physiopathology , Muscle Hypotonia/physiopathology , Myopia/physiopathology , Obesity/physiopathology , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/complications , Developmental Disabilities/physiopathology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Female , Fingers/physiopathology , Humans , Intellectual Disability/complications , Male , Microcephaly/complications , Middle Aged , Models, Biological , Muscle Hypotonia/complications , Mutation , Myopia/complications , Obesity/complications , Retinal Degeneration , Risk , Signal Transduction , Vesicular Transport Proteins/genetics , Young Adult
20.
Oncotarget ; 6(12): 10267-83, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25868858

ABSTRACT

High levels of circulating heat shock protein 70 (HSP70) are detected in many cancers. In order to explore the effects of extracellular HSP70 on human microvascular endothelial cells (HMEC), we initially used gap-FRAP technique. Extracellular human HSP70 (rhHSP70), but not rhHSP27, blocks the gap-junction intercellular communication (GJIC) between HMEC, disrupts the structural integrity of HMEC junction plaques, and decreases connexin43 (Cx43) expression, which correlates with the phosphorylation of Cx43 serine residues. Further exploration of these effects identified a rapid transactivation of the Epidermal Growth Factor Receptor in a Toll-Like Receptor 4-dependent manner, preceding its internalization. In turn, cytosolic Ca2+ oscillations are generated. Both GJIC blockade and Ca2+ mobilization partially depend on ATP release through Cx43 and pannexin (Panx-1) channels, as demonstrated by blocking activity or expression of channels, and inactivating extracellular ATP. By monitoring dye-spreading into adjacent cells, we show that HSP70 released from human monocytes in response to macrophage colony-stimulating factor, prevents the formation of GJIC between monocytes and HMEC. Therapeutic manipulation of this pathway could be of interest in inflammatory and tumor growth.


Subject(s)
Endothelial Cells/metabolism , Gap Junctions/metabolism , HSP70 Heat-Shock Proteins/metabolism , Cell Communication/drug effects , Cell Communication/physiology , Connexin 43/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Gap Junctions/drug effects , HSP70 Heat-Shock Proteins/blood , HSP70 Heat-Shock Proteins/pharmacology , Humans , Phosphorylation , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...