Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Appl Polym Mater ; 6(7): 4226-4232, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633816

ABSTRACT

Although multiple methods have been reported in the literature for the chemical recycling of poly(ethylene terephthalate) (PET), large-scale depolymerization is not yet widely employed. The main reasons for the limited adoption of chemical recycling of PET are the harsh conditions required and the lack of selectivity. In this study, the organocatalytic glycolysis of PET mediated by organic bases at low temperatures is studied, and routes to avoid the deactivation of the catalyst are explored. It is shown that the formation of terephthalic acid by uncontrolled hydrolysis leads to issues which can be resolved using potassium tert-butoxide as a cocatalyst. Finally, complex PET waste obtained from a mechanical recycling plant was depolymerized under optimized conditions, obtaining bis(2-hydroxyethyl) terephthalate yields >90% in less than 15 min at only 100 °C. These results open the way to efficient recycling of PET-enriched waste streams under milder conditions.

2.
ACS Sustain Chem Eng ; 11(1): 332-342, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36643003

ABSTRACT

The importance of systematic and efficient recycling of all forms of plastic is no longer a matter for debate. Constituting the sixth most produced polymer family worldwide, polyurethanes, which are used in a broad variety of applications (buildings, electronics, adhesives, sealants, etc.), are particularly important to recycle. In this study, polyurethanes are selectively recycled to obtain high value-added molecules. It is demonstrated that depolymerization reactions performed with secondary amines selectively cleave the C-O bond of the urethane group, while primary amines unselectively break C-O and C-N bonds. The selective cleavage of C-O bonds, catalyzed by an acid:base mixture, led to the initial polyol and a functional diurea in several hours to a few minutes for both model polyurethanes and commercial polyurethane foams. Different secondary amines were employed as nucleophiles to synthesize a small library of diureas obtained in good to excellent yields. This study not only targets the recovery of the initial polyol but also aims to form new diureas which are useful building blocks for the polymerization of innovative materials.

4.
Nature ; 603(7903): 803-814, 2022 03.
Article in English | MEDLINE | ID: mdl-35354997

ABSTRACT

The vast majority of commodity plastics do not degrade and therefore they permanently pollute the environment. At present, less than 20% of post-consumer plastic waste in developed countries is recycled, predominately for energy recovery or repurposing as lower-value materials by mechanical recycling. Chemical recycling offers an opportunity to revert plastics back to monomers for repolymerization to virgin materials without altering the properties of the material or the economic value of the polymer. For plastic waste that is either cost prohibitive or infeasible to mechanically or chemically recycle, the nascent field of chemical upcycling promises to use chemical or engineering approaches to place plastic waste at the beginning of a new value chain. Here state-of-the-art methods are highlighted for upcycling plastic waste into value-added performance materials, fine chemicals and specialty polymers. By identifying common conceptual approaches, we critically discuss how the advantages and challenges of each approach contribute to the goal of realizing a sustainable plastics economy.

5.
Macromolecules ; 54(13): 6214-6225, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-35693113

ABSTRACT

Polylactide (PLA) has emerged as one of the most promising bio-based alternatives to petroleum-based plastics, mainly because it can be produced from the fermentation of naturally occurring sugars and because it can be industrially compostable. In spite of these benefits, the industrial ring-opening polymerization (ROP) of l-lactide (L-LA) still requires the use of highly active and thermally stable metal-based catalysts, which have raised some environmental concerns. While the excellent balance between activity and functional group compatibility of organic acid catalysts makes them some of the most suitable catalysts for the metal-free ROP of L-LA, the majority of these acids are highly volatile and subject to decomposition at high temperature, which limits their use under industrially relevant conditions. In this work we exploit the use of a nonstoichiometric acid-base organocatalyst to promote the solvent-free and metal-free ROP of L-LA at elevated temperatures in the absence of epimerization and transesterification. To do so, a stable acidic complex was prepared by mixing 4-(dimethylamino)pyridine (DMAP) with 2 equiv of methanesulfonic acid (MSA). Both experimental and computational results indicate that DMAP:MSA (1:2) not only is highly thermally stable but also promotes the retention of stereoregularity during the polymerization of L-LA, leading to PLLA with a molar mass of up to 40 kg mol-1 and a chiral purity in excess of 98%. This result provides a new feature to exploit in organocatalyzed polymerization and in the design of new catalysts to facilitate the path to market.

6.
Angew Chem Int Ed Engl ; 60(12): 6710-6717, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33336829

ABSTRACT

Chemical recycling of plastic waste represents a greener alternative to landfill and incineration, and potentially offers a solution to the environmental consequences of increased plastic waste. Most plastics that are widely used today are designed for durability, hence currently available depolymerisation methods typically require harsh conditions and when applied to blended and mixed plastic feeds generate a mixture of products. Herein, we demonstrate that the energetic differences for the glycolysis of BPA-PC and PET in the presence of a protic ionic salt TBD:MSA catalyst enables the selective and sequential depolymerisation of these two commonly employed polymers. Employing the same procedure, functionalised cyclic carbonates can be obtained from both mixed plastic wastes and industrial polymer blend. This methodology demonstrates that the concept of catalytic depolymerisation offers great potential for selective polymer recycling and also presents plastic waste as a "greener" alternative feedstock for the synthesis of high added value molecules.

7.
ACS Macro Lett ; 9(4): 443-447, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35648499

ABSTRACT

Functionalized cyclic carbonates are attractive monomers for the synthesis of innovative polycarbonates or polyurethanes for various applications. Even though their synthesis has been intensively investigated, doing so in a sustainable and efficient manner remains a challenge. Herein, we propose an organocatalytic procedure based on the depolymerization of a commodity polymer, bisphenol A based polycarbonate (BPA-PC). Different carbonate-containing heterocycles are obtained in good to excellent yields employing BPA-PC as a sustainable and inexpensive source of carbonate, including functionalized six-membered cyclic carbonates.

8.
Nature ; 568(7753): 467-468, 2019 04.
Article in English | MEDLINE | ID: mdl-31011182
9.
ACS Macro Lett ; 8(8): 1055-1062, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-35619485

ABSTRACT

Organocatalysis provides a powerful alternative in many polymerization reactions and nowadays has become a valuable tool for polymer chemists. The key reason for transitioning to organocatalysts is not only their ability to be effectively removed from resultant products, but also, their potential to exquisitely control the catalytic activity and selectivity of the polymerization processes. While organocatalysis has been largely implemented in research laboratories, its use in industrial bulk polymerization processes is still scarce. This is mostly due to the poor thermal stability of organocatalysts at temperatures (150-250 °C) usually employed for industrial polymerizations. In this Viewpoint, we highlight the recent advances of the use of acid-base ionic mixtures in high temperatures bulk polymerization reactions. First, we will focus on the synthesis, characterization, difunctional catalytic properties, and thermal stability of these acid-base mixtures. Afterward, we will emphasize the recent literature describing their use in chain growth and step-growth polymerizations. Moreover, the highlight will also draw attention to recent efforts in the use of these acid-base mixtures in polymer recycling by means of depolymerization.

SELECTION OF CITATIONS
SEARCH DETAIL
...