Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Adv Colloid Interface Sci ; 134-135: 236-48, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17537391

ABSTRACT

Contact angle hysteresis of liquids with different molecular and geometrical properties on high quality films of four fluoropolymers was studied. A number of different causes are identified for hysteresis. With n-alkanes as probe liquids, contact angle hysteresis is found to be strongly related to the configuration of polymer chains. The largest hysteresis is obtained with amorphous polymers whereas the smallest hysteresis occurs for polymers with ordered molecular chains. This is explained in terms of sorption of liquid by the solid and penetration of liquid into the polymer film. Correlation of contact angle hysteresis with the size of n-alkane molecules supports this conclusion. On the films of two amorphous fluoropolymers with different molecular configurations, contact angle hysteresis of one and the same liquid with "bulky" molecules is shown to be quite different. On the surfaces of Teflon AF 1600, with stiff molecular chains, the receding angles of the probe liquids are independent of contact time between solid and liquid and similar hysteresis is obtained for all the liquids. Retention of liquid molecules on the solid surface is proposed as the most likely cause of hysteresis in these systems. On the other hand, with EGC-1700 films that consist of flexible chains, the receding angles are strongly time-dependent and the hysteresis is large. Contact angle hysteresis increases even further when liquids with strong dipolar intermolecular forces are used. In this case, major reorganization of EGC-1700 chains due to contact with the test liquids is suggested as the cause. The effect of rate of motion of the three-phase line on the advancing and receding contact angles, and therefore contact angle hysteresis, is investigated. For low viscous liquids, contact angles are independent of the drop front velocity up to approximately 10 mm/min. This agrees with the results of an earlier study that showed that the rate-dependence of the contact angles is an issue only for liquids with high viscosity.

2.
J Biotechnol ; 86(2): 151-60, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11245903

ABSTRACT

Poly(lactide) (PLA) was spun both in a high speed spinning process with take-up velocities of 1000-5000 m min(-1) and in a spin drawing process at draw ratios of 4-6. The effect of the melt spinning conditions on the development of the structural hierarchy in the fibres and the relations to the textile physical properties were investigated. The PLA fibres were characterised with regard to the degree of crystallinity by DSC and WAXS, the orientation by WAXS and birefringence, and the stress-strain behaviour. The maximum physical break stress and the E-modulus observed in the spin drawn fibres were about 490 MPa and 6.3 GPa, respectively, at an elongation at break of 30%. The PLA was a copolymer of L-lactide (92 wt.%) and meso-lactide (8 wt.%) and was generated by reactive extrusion polymerisation. The PLA virgin pellets were analysed regarding their degradation during the spinning processes. Their thermal and rheological properties were determined by DSC and dynamic rheological measurements, respectively, to derive suitable parameters for the melt spinning processes.


Subject(s)
Polyesters/chemistry , Biodegradation, Environmental , Birefringence , Polyesters/metabolism , Tensile Strength , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...