Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 13(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34685265

ABSTRACT

In this study, solvogels containing (2-((2-(ethoxycarbonyl)prop-2-en-1-yl)oxy)-ethyl) phosphonic acid (ECPA) and N,N'-diethyl-1,3-bis-(acrylamido)propane (BNEAA) as the crosslinker are synthesized by UV induced crosslinking photopolymerization in various solvents. The polymerization of the ECPA monomer is monitored by the conversion of double bonds with in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The morphology of the networks is characterized by in situ photorheology, solid state NMR spectroscopy, and scanning electron microscopy (SEM) of the dried gels. It is demonstrated that the storage modulus is not only determined by the crosslinker content in the gel, but also by the solvent used for preparation. The networks turn out to be porous structures with G' being governed by a rigid, phase-separated polymer phase rather than by entropic elasticity. The external and internal pKa values of the poly(ECPA-co-BNEAA) gels were determined by titration with a specially designed method and compared to the calculated values. The polymer-immobilized phosphonic acid groups in the hydrogels induce buffering behavior into the system without using a dissolved buffer. The calcium accumulation in the gels is studied by means of a double diffusion cell filled with calcium ion-containing solutions. The successful accumulation of hydroxyapatite within the gels is shown by a combination of SEM, energy-dispersive X-ray spectroscopy (EDX) and wide-angle X-ray scattering (WAXS).

2.
Langmuir ; 37(29): 8886-8893, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34275300

ABSTRACT

Organic/inorganic hybrid composite materials with the dispersed phases in sizes down to a few tens of nanometers raised very great interest. In this paper, it is shown that silica/epoxy nanocomposites with a silica content of 6 wt % may be obtained with an "in situ" sol-gel procedure starting from two precursors: tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethoxysilane (APTES). APTES also played the role of a coupling agent. The use of advanced techniques (bright-field high-resolution transmission electron microscopy, HRTEM, and combined small- and wide-angle X-ray scattering (SAXS/WAXS) performed by means of a multirange device Ganesha 300 XL+) allowed us to evidence a multisheet structure of the nanoparticles instead of the gel one typically obtained through a sol-gel route. A mechanism combining in a new manner well-assessed knowledge regarding sol-gel chemistry, emulsion formation, and Ostwald ripening allowed us to give an explanation for the formation of the observed lamellar nanoparticles.

3.
Materials (Basel) ; 13(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825486

ABSTRACT

In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN. The molecular compatibility, miscibility, and thermal stability of the system were studied by means of shear rheological measurements. The achieved mechanical properties were found to be related to the temperature-dependent relaxation time (consistence parameter) of the spinning dope and the diffusion kinetics of the ionic liquids from the fibers into the coagulation bath. Furthermore, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical tests (DMA) were utilized to understand in-depth the thermal and the stabilization kinetics of the developed fibers and the impact of lignin on the stabilization process of the fibers. Low molecular weight lignin increased the thermally induced physical shrinkage, suggesting disturbing effects on the semi-crystalline domains of the PAN matrix, and suppressed the chemically induced shrinkage of the fibers. The knowledge gained throughout the present paper allows summarizing a novel avenue to develop lignin-based CF designed with adjusted thermal stability.

4.
J Colloid Interface Sci ; 578: 441-451, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32535426

ABSTRACT

We investigate the self-assembly of cylinder-forming polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers (BCP) mixed with metal nanoparticles (NP) coated with short-chain polystyrene (PS) ligands. The NP formed hierarchical superstructures under confinement of cylindrical PS domains of PS-b-P4VP BCP. The complexity of NP superstructures was found to depend on the ratio between PS cylindrical domain size and NP size (DC/DNP). As the DC/DNP ratio increased, the number of NP layers normal to the cylinder axis also increased. However, the packing density of the NP decreased at higher DC/DNP. Furthermore, the morphology of the structures obtained during different solvent casting conditions revealed that the initial clustering of NP and micellization around these clusters act as a precursor for the subsequent formation of closely packed structures of NP in cylinders. The experimental results were further supported by modeling results obtained from molecular dynamics (MD) simulation. Based on MD simulations, we constructed structural phase diagram of nanoparticle assemblies in the presence of asymmetric diblock copolymers comprising short NP-attractive blocks. The MD simulation results indicate that NP undergo transition from spherical to cylindrical assemblies depending on the NP size, the overall concentration of components and the degree of affinity of the minor block to NP.

5.
Polymers (Basel) ; 12(4)2020 Apr 12.
Article in English | MEDLINE | ID: mdl-32290604

ABSTRACT

Polyamide 66 (PA 66) was injection-molded to obtain samples with a structure gradient between skin and core, as it was revealed by analysis of the semi-crystalline morphology using polarized-light optical microscopy (POM). Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) were employed to characterize thin sections with a thickness in the order of magnitude of 50 µm, allowing detection of crystals of different perfection, as a function of the distance from the surface. It was found that the transparent and non-spherulitic skin layer contains rather imperfect α-crystals while the perfection of α-crystals continuously increases with extending distance from the surface. Since variation of the molding conditions allows tailoring the skin-core morphology, the present study was performed to suggest a reliable route to map the presence of specific semi-crystalline morphologies in such samples.

6.
Polymers (Basel) ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383639

ABSTRACT

The chemical modification (namely the epoxidation) of a star shaped block copolymer (BCP) based on polystyrene (PS) and polybutadiene (PB) and its effect on structural and mechanical properties of the polymer were investigated. Epoxidation degrees of 37 mol%, 58 mol%, and 82 mol% were achieved by the reaction of the copolymer with meta-chloroperoxy benzoic acid (m-CPBA) under controlled conditions. The BCP structure was found to change from lamellae-like to mixed-type morphologies for intermediate epoxidation level while leading to quite ordered cylindrical structures for the higher level of chemical modification. As a consequence, the glass transition temperature (Tg) of the soft PB component of the BCP shifted towards significantly higher temperature. A clear increase in tensile modulus and tensile strength with a moderate decrease in elongation at break was observed. The epoxidized BCPs are suitable as reactive templates for the fabrication of nanostructured thermosetting resins.

7.
Polymers (Basel) ; 11(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703362

ABSTRACT

A nanostructured linear triblock copolymer based on styrene and butadiene with lamellar morphology is filled with multiwalled carbon nanotubes (MWCNTs) of up to 1 wt% by melt compounding. This study deals with the dispersability of the MWCNTs within the nanostructured matrix and its consequent impact on block copolymer (BCP) morphology, deformation behavior, and the electrical conductivity of composites. By adjusting the processing parameters during melt mixing, the dispersion of the MWCNTs within the BCP matrix are optimized. In this study, the morphology and glass transition temperatures (Tg) of the hard and soft phase are not significantly influenced by the incorporation of MWCNTs. However, processing-induced orientation effects of the BCP structure are reduced by the addition of MWCNT accompanied by a decrease in lamella size. The stress-strain behavior of the triblock copolymer/MWCNT composites indicate higher Young's modulus and pronounced yield point while retaining high ductility (strain at break ~ 400%). At a MWCNT content of 1 wt%, the nanocomposites are electrically conductive, exhibiting a volume resistivity below 3 × 103 Ω·cm. Accordingly, the study offers approaches for the development of mechanically flexible functional materials while maintaining a remarkable structural property profile.

8.
J Phys Chem B ; 123(24): 5168-5175, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31125234

ABSTRACT

A new biomimetic stimuli-responsive adaptive elastomeric material, whose mechanical properties are altered by a water treatment is reported in this paper. This material is a calcium sulphate (CaSO4) filled composite with an epoxidized natural rubber (ENR) matrix. By exploiting various phase transformation processes that arise when CaSO4 is hydrated, several different crystal structures of CaSO4· xH2O can be developed in the cross-linked ENR matrix. Significant improvements in the mechanical and thermal properties are then observed in the water-treated composites. When compared with the untreated sample, there is approximately 100% increase in the dynamic modulus. The thermal stability of the composites is also improved by increasing the maximum degradation rate temperature by about 20 °C. This change in behavior results from an in situ development of hydrated crystal structures of the nanosized CaSO4 particles in the ENR matrix, which has been verified using Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and X-ray scattering. This work provides a promising and relatively simple pathway for the development of next generation of mechanically adaptive elastomeric materials by an eco-friendly route, which may eventually also be developed into an innovative biodegradable and biocompatible smart polymeric material.

9.
Chempluschem ; 84(9): 1338-1345, 2019 09.
Article in English | MEDLINE | ID: mdl-31944045

ABSTRACT

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) usually employs highly crystalline small-molecule matrices, and the analyte is interpreted as being co-crystallized with the matrix. We recently showed that semi-crystalline polymers are efficient matrices for the detection of low-molecular-weight compounds (LMWCs) in MALDI MS and MALDI MS Imaging, and are dual-mode, i. e., enabling both positive and negative modes. The matrix performances of two fluorene/napthalene diimide co-polymers P(TNDIT-Fl(C4 C2 )) and P(TNDIT-Fl(C10 C8 )) were investigated and compared. Both are fully amorphous according to XRD measurements, show high relative absorption values at the wavelength of common MALDI lasers (λNd:YAG =355 nm: C4 C2 =73 %; C10 C8 =67 %), and are solution processable. As matrices, they are dual-mode, and enable the detection of LMWCs while being mostly MALDI-silent. Compared with semicrystalline polymer matrices, the amorphous matrices give similar or better signal intensities, thus indicating that analyte inclusion takes place in the amorphous part of the polymer matrix.

10.
Biomacromolecules ; 18(10): 3178-3184, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28840711

ABSTRACT

We report fabrication and characterization of electrospun, porous multi-layer scaffolds based-on thermo-responsive polymers polycaprolactone (PCL) and poly(N-isopropylacrylamide). We found that the electrospun mats fold into various 3D structures in an aqueous environment at different temperatures. We could determine the mechanism behind different folding behaviors under different conditions by consideration of the properties of the individual polymers. At 37 °C in an aqueous environment, the scaffolds spontaneously rolled into tubular structures with PCL as the inner layer, making them suitable for cell encapsulation. We also demonstrated that the cell adhesion and viability could be improved by coating the polymers with collagen, showing the suitability of this scaffold for several tissue engineering applications.


Subject(s)
Tissue Engineering/methods , Tissue Scaffolds/chemistry , 3T3 Cells , Acrylamides/chemistry , Animals , Collagen/chemistry , Mice , Polyesters/chemistry , Porosity
12.
ACS Appl Mater Interfaces ; 9(5): 4873-4881, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-27991772

ABSTRACT

It is commonly assumed that the substantial element of reversibly actuating soft polymeric materials is chemical cross-linking, which is needed to provide elasticity required for the reversible actuation. On the example of melt spun and three-dimensional printed Janus fibers, we demonstrate here for the first time that cross-linking is not an obligatory prerequisite for reversible actuation of solid entangled polymers, since the entanglement network itself can build elasticity during crystallization. Indeed, we show that not-cross-linked polymers, which typically demonstrate plastic deformation in melt, possess enough elastic behavior to actuate reversibly. The Janus polymeric structure bends because of contraction of the polymer and due to entanglements and formation of nanocrystallites upon cooling. Actuation upon melting is simply due to relaxation of the stressed nonfusible component. This approach opens perspectives for design of solid active materials and actuator for robotics, biotechnology, and smart textile applications. The great advantage of our principle is that it allows design of non-cross-linked self-moving materials, which are able to actuate in both water and air, which are not cross-linked. We demonstrate application of actuating fibers for design of walkers, structures with switchable length, width, and thickness, which can be used for smart textile applications.

13.
Langmuir ; 31(24): 6853-62, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26035441

ABSTRACT

Linear [B,10]-polyamines [(CH2)BN(CH3)(CH2)10N(CH3)] were prepared (B = 3 or 6). Protonated by stoichiometric amounts of n-alkylsulfonic acids, they form demethyl-ionene sulfonate complexes, which proved thermally stable up to 220 °C. Salt free complexes were investigated by polarized microscopy, thermogravimetry, and X-ray diffraction. Except the heptyl sulfonate, which crystallized, all complexes bearing longer alkyl chains formed mesogenic phases. Being isotropic in dry state, they became optically anisotropic when exposed to humidity due to a lyotropic transition (mediated by the gas phase) to a hexagonal phase, mostly. A cubic phase containing less water was also observed. Anisotropic complexes again were converted to an isotropic state upon heating under controlled humidity. The clearing temperatures distinctly depend on humidity and rise with increasing length of the alkyl sulfonate. This may allow the use of the complexes as humidity sensors. Oriented liquid crystalline samples are formed upon fast cooling in flat capillaries.

14.
ACS Nano ; 9(6): 6147-57, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26014100

ABSTRACT

This study reports on a facile approach to the fabrication of nanoporous carbon cathodes for lithium sulfur batteries using gyroid carbon replicas based on use of polystyrene-poly-4-vinylpyridine (PS-P4VP) block copolymers as sacrificial templates. The free-standing gyroid carbon network with a highly ordered and interconnected porous structure has been fabricated by impregnating the carbon precursor solution into the gyroid block copolymer nanotemplates and subsequently carbonizing them. A wide range of analytical tools have been employed to characterize fabricated porous carbon material. Prepared nanostructures are envisioned to have a great potential in myriad areas such as energy storage/conversion devices owing to their fascinating morphology exhibiting high surface area and uniform porosity with interconnected three-dimensional networks. The resulting carbon nanoporous structures infused with elemental sulfur have been found to work as a promising electrode for lithium sulfur batteries demonstrating a high cycling stability over more than 200 cycles.

15.
Macromol Rapid Commun ; 36(1): 60-4, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25393938

ABSTRACT

Wide-angle X-ray scattering (WAXS) and temperature-dependent Fourier transform infrared spectroscopy (FTIR) spectroscopy are used to study hydrogen bonding interactions of a hydroxyl-functionalized polyethylene (PE) prepared by acyclic diene metathesis (ADMET) chemistry. The hydroxyl polymer exhibits an orthorhombic unit cell structure with characteristic reflection planes at (110) and (200), comparable to pure crystalline PE. These data unequivocally demonstrate that the OH branch is excluded from the PE lamellae. Furthermore, the polymer melts 100 °C higher than all previous analogous polymers possessing precision placed long aliphatic branches that also are excluded from PE lamellae. Temperature-dependent FTIR spectroscopy from ambient to 150 °C, followed by cooling to 125 °C supports exclusion of the hydroxyl group from the crystalline lattice. It is concluded that these hydroxyl groups form stable physical networks in the amorphous region via hydrogen bonding and are important for the overall morphology of such polymers.


Subject(s)
Alkenes/chemistry , Polyethylenes/chemistry , Crystallization , Hydrogen Bonding , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
16.
ACS Appl Mater Interfaces ; 7(23): 12339-47, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25496492

ABSTRACT

Polymers for all-organic field-effect transistors are under development to cope with the increasing demand for novel materials for organic electronics. Besides the semiconductor, the dielectric layer determines the efficiency of the final device. Poly(methyl methacrylate) (PMMA) is a frequently used dielectric. In this work, the chemical structure of this material was stepwise altered by incorporation of cross-linkable and/or self-organizing comonomers to improve the chemical stability and the dielectric properties. Different types of cross-linking methods were used to prevent dissolution, swelling or intermixing of the dielectric e.g. during formation processes of top electrodes or semiconducting layers. Self-organizing comonomers were expected to influence the dielectric/semiconductor interface, and moreover, to enhance the chemical resistance of the dielectric. Random copolymers were obtained by free radical and reversible addition-fragmentation chain transfer (RAFT) polymerization. With 6-[4-(4'-cyanophenyl)phenoxy]alkyl side chains having hexyl or octyl spacer, thermotropic liquid crystalline (LC) behavior and nanophase separation into smectic layers was observed, while copolymerization with methyl methacrylate induced molecular disorder. In addition to chemical, thermal and structural properties, electrical characteristics like breakdown field strength (EBD) and relative permittivity (k) were determined. The dielectric films were studied in metal-insulator-metal setups. EBD appeared to be strongly dependent on the type of electrode used and especially the ink formulation. Cross-linking of PMMA yielded an increase in EBD up to 4.0 MV/cm with Ag and 5.7 MV/cm with PEDOT: PSS electrodes because of the increased solvent resistance. The LC side chains reduce the ability for cross-linking resulting in decreased breakdown field strengths.

17.
ACS Appl Mater Interfaces ; 4(8): 4200-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22834708

ABSTRACT

Acrylic block copolymers have several advantages over conventional styrenic block copolymers, because of the presence of a saturated backbone and polar pendant groups. This investigation reports the preparation and characterization of di- and triblock copolymers (AB and ABA types) of 2-ethylhexyl acrylate (EHA) and methyl methacrylate (MMA) via atom transfer radical polymerization (ATRP). A series of block copolymers, PEHA-block-PMMA(AB diblock) and PMMA-block-PEHA-block-PMMA(ABA triblock) were prepared via ATRP at 90 °C using CuBr as catalyst in combination with N,N,N',N″,N″-pentamethyl diethylenetriamine (PMDETA) as ligand and acetone as additive. The chemical structure of the macroinitiators and molar composition of block copolymers were characterized by (1)H NMR analysis, and molecular weights of the polymers were analyzed by GPC analysis. DSC analysis showed two glass transition temperatures (T(g)), indicating formation of two domains, which was corroborated by AFM analysis. Small-angle X-ray scattering (SAXS) analysis of AB and ABA block copolymers showed scattering behavior inside the measuring limits indicating nanophase separation. However, SAXS pattern of AB diblock copolymers indicated general phase separation only, whereas for ABA triblock copolymer an ordered or mixed morphology could be deduced, which is assumed to be the reason for the better mechanical properties achieved with ABA block copolymers than with the AB analogues.


Subject(s)
Acrylates/chemistry , Biocompatible Materials/chemistry , Polymethyl Methacrylate/chemistry , Calorimetry, Differential Scanning/methods , Chromatography, Gas/methods , Hot Temperature , Magnetic Resonance Spectroscopy/methods , Microscopy, Atomic Force/methods , Polymers/chemistry , Scattering, Radiation , Scattering, Small Angle , Stress, Mechanical , Temperature , Tensile Strength , X-Rays
18.
Langmuir ; 26(22): 17649-55, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20949923

ABSTRACT

This study reports on the fabrication of magnetically responsive hollow titania capsules by confining the superparamagnetic Fe(3)O(4) nanoparticles within a hollow and porous titania (TiO(2)) shell. The employed protocol involves precipitation of titania shell on the magnetite (Fe(3)O(4)) encapsulated polystyrene beads followed by the calcination of resulting composite particles at elevated temperature. Scanning electron microscopy and transmission electron microscopy reveal the presence of a thick, complete but irregular titania shell on the magnetic polystyrene beads after the templating process. Electron energy loss mapping image analysis has been employed to investigate the spatial distribution of titania and magnetite phases of magnetic hollow titania capsules (MHTCs). Magnetic characterization indicates that both titania-coated magnetic polystyrene beads (TMPBs) and MHTCs are superparamagnetic in nature with the saturated magnetizations of 5.6 and 8.1 emu/g, respectively. X-ray diffraction (XRD) analysis reveals that titania shell of these capsules is composed of photoactive anatase phase. Nitrogen adsorption-desorption analysis has been employed to estimate the specific surface area and the average pore diameter of the fabricated hollow structures. Photocatalytic activity of the fabricated MHTCs for the photodegradation of rhodamine 6G dye has been demonstrated and compared with that of bulk titania nanoparticles.

19.
Langmuir ; 26(1): 526-32, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19785399

ABSTRACT

Fabrication of organic-inorganic composite particles with tailored size, shape, and morphology has been attracting great attention from researchers because of their fascinating properties and applications in a variety of potential fields. In this study, we report on the fabrication of PS-In(OH)(3) (polystyrene-indium hydroxide) composite particles by hydrolyzing the In(OC(3)H(7))(3) (indium isopropoxide) salt in the presence of beta-diketone functionalized PS colloidal particles. A systematic investigation of the employed reaction conditions allowed us to tune the morphology, size, and In(OH)(3) content of the PS-In(OH)(3) composite particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results illustrate that variation in the employed concentration of the In(OC(3)H(7))(3) salt in reaction media can effectively tune the morphology of resulting composite particles between "core-shell" and "raspberry-like". X-ray diffraction (XRD) analysis confirms the phase purity of In(OH)(3) nanoparticles precipitated on the surface of PS beads. Colloidal stability of the composite particles has been found to be reduced with increasing the deposited amount of In(OH)(3) nanoparticles. Thermogravimetric analysis (TGA) suggests a continuous increase in the deposited amount of In(OH)(3) nanoparticles with increasing concentration of In(OC(3)H(7))(3) salt in reaction media. The resulting PS-In(OH)(3) composite particles are envisioned to be used in a myriad of potential applications including fabrication of optoelectronic devices, absorption/separation supporting material, catalysts, and hydrophobic surfaces.

20.
J Phys Chem B ; 113(6): 1569-78, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19193163

ABSTRACT

The effect of annealing on the miscibility and phase behavior of Sorona {poly(trimethylene terephthalate), PTT} and bisphenol A polycarbonate (PC) blends was examined. These blends exhibited heterogeneous phase-separated morphology and two well-spaced glass transition temperatures (Tgs) indicating immiscibility. The Sorona/PC blends were thermally annealed at 260 degrees C for different times to induce various extents of transreactions between the two polymers. After annealing at high temperature the original two Tgs of blends were found to merge into one single Tg, exhibiting a homogeneous morphology. It is interesting to note that upon extended annealing the original semicrystalline morphology transformed into an amorphous nature. This is attributed to chemical transreactions between the PTT and PC chain segments as evidenced with FTIR, DSC, DMA, 1H NMR, and WAXS measurements. A new characteristic aryl C-O-C vibration band present at 1070 cm(-1) in the FTIR spectra of the annealed blends indicated the formation of an aromatic polyester structure due to the transreactions between PTT and PC. The sequence structures of the produced copolyesters were determined by a NMR triad analysis, which showed that the randomness increased with time of heating. WAXS analysis confirmed that the PTT/PC blends completely lost their crystallinity when annealed at 260 degrees C for a period of 120 min or longer, indicating the formation of fully random copolyesters. A random copolymer formed as a result of the transreactions between PTT and PC serves as a compatibilizer at the beginning, and upon extended annealing this became the main species of the system which is finally transformed to a homogeneous and amorphous phase.


Subject(s)
Polycarboxylate Cement/chemistry , Polyethylene Terephthalates/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Particle Size , Scattering, Radiation , Solubility , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...