Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 88(22): 15615-15625, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37882436

ABSTRACT

Novel binding motifs suitable for the construction of multitopic guest-based molecular devices (e.g., switches, sensors, data storage, and catalysts) are needed in supramolecular chemistry. No rigid, aliphatic binding motif that allows for axial disubstitution has been described for cucurbit[6]uril (CB6) so far. We prepared three model guests combining spiro[3.3]heptane and bicyclo[1.1.1]pentane centerpieces with imidazolium and ammonium termini. We described their binding properties toward CB6/7 and α-/ß-CD using NMR, titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction. We found that a bisimidazolio spiro[3.3]heptane guest forms inclusion complexes with CB6, CB7, and ß-CD with respective association constants of 4.0 × 104, 1.2 × 1012, and 1.4 × 102. Due to less hindering terminal groups, the diammonio analogue forms more stable complexes with CB6 (K = 1.4 × 106) and CB7 (K = 3.8 × 1012). The bisimidazolio bicyclo[1.1.1]pentane guest forms a highly stable complex only with CB7 with a K value of 1.1 × 1011. The high selectivity of the new binding motifs implies promising potential in the construction of multitopic supramolecular components.

2.
Chemphyschem ; 21(18): 2084-2095, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32672383

ABSTRACT

Stilbene derivatives are well-recognised substructures of molecular switches based on photochemically and/or thermally induced (E)/(Z) isomerisation. We combined a stilbene motif with two benzimidazolium arms to prepare new sorts of supramolecular building blocks and examined their binding properties towards cucurbit[n]urils (n=7, 8) and cyclodextrins (ß-CD, γ-CD) in water. Based on the 1 H NMR data and molecular dynamics simulations, we found that two distinct complexes with different stoichiometry, i. e., guest@ß-CD and guest@ß-CD2 , coexist in equilibrium in a water solution of the (Z)-stilbene-based guests. We also demonstrated that the bis(benzimidazolio)stilbene guests can be transformed from the (E) into the (Z) form via UV irradiation and back via thermal treatment in DMSO.

3.
Org Lett ; 19(10): 2698-2701, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28467704

ABSTRACT

Cubane, an intriguing chemical curiosity first studied in the early 1960s, has become a valuable structural motif and has recently been involved in the structures of a great number of prospective compounds. The first dicationic supramolecular guest 5 is prepared and derived from a 1,4-disubstituted cubane moiety, and its binding behavior toward cucurbit[n]urils (CBn) and cyclodextrins (CD) is studied. The bisimidazolium salt 5 forms 1:1 inclusion complexes with CB7, CB8, and ß-CD with the respective association constants (6.7 ± 0.5) × 1011 M-1, (1.5 ± 0.2) × 109 M-1, and <102 M-1 in water. The solid-state structures of the 5@CB7 and 5@CB8 complexes are also reported.

4.
Int J Pharm ; 436(1-2): 403-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22750429

ABSTRACT

Cocrystallization and salt formation have been shown to entail substantial promise in tailoring the physicochemical properties of drug compounds, in particular, their dissolution and hygroscopicity. In this work, we report on the preparation and comparative evaluation of a new cocrystal of itraconazole and malonic acid and two new hydrochloric salts (dihydrochloride and trihydrochloride) of itraconazole. The intrinsic dissolution rate, hygroscopicity, and thermodynamic stability were determined for the obtained solid-state forms and compared to itraconazole-succinic acid (2:1) cocrystal. The results show that the solid-state forms with higher intrinsic dissolution rate are less stable. Both itraconazole salts exhibited the highest dissolution rate, but also demonstrated high hygroscopicity at relative humidity above 70%. The new cocrystal, in contrast, were found to increase the dissolution rate of the parent drug by about 5-fold without compromising the hygroscopicity and the stability. This study demonstrates that, for dissolution rate enhancement of poorly water-soluble weak bases, cocrystallization is a more suitable approach than hydrochloric salt formation.


Subject(s)
Antifungal Agents/chemistry , Chlorides/chemistry , Itraconazole/chemistry , Malonates/chemistry , Crystallization , Drug Stability , Powder Diffraction , Salts/chemistry , Solubility , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...