Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732483

ABSTRACT

The current investigation aims to underline the impact of salicylic acid or calcium chloride seed pre-treatments on mineral status and oxidative stress markers, namely levels of electrolyte leakage (EL) and lipid peroxidation levels, measured as thiobarbituric reactive substances (TBARS), and the activity of some antioxidant enzymes in roots and leaves of plants in two barley species grown under various salt treatments. Overall, our results revealed that salinity inhibits essential nutrient absorption such as iron, calcium, magnesium and potassium and stimulates the absorption of sodium. Also, this environmental constraint induced oxidative stress in plants in comparison with the control conditions. This state of oxidative stress is reflected by an increase in TBARS content as well as the stimulation of EL values. In addition, salinity induced disturbances in the activity of antioxidant enzymes, which were mainly dependent on the applied salt concentration and the species. In addition, Hordeum marinum maintained high antioxidant enzyme activity and low levels of oxidative stress parameters, which reinforces its salt-tolerant character. Importantly, salicylic acid or calcium chloride seed priming alleviated the mineral imbalance and the oxidative damage induced by salinity. Moreover, seed priming improves iron, calcium magnesium and potassium content and limitsthe accumulation of sodium. Also, both treatments not only decrease TBARS levels and limit EL, but they also stimulate the antioxidant enzyme activities in the leaves and roots of the stressed plants as compared with stressed plants grown from non-primed seeds. Interestingly, the beneficial effects of the mentioned treatments were more notable on Hordeum vulgare species.

2.
Physiol Plant ; 175(5): e14026, 2023.
Article in English | MEDLINE | ID: mdl-37882313

ABSTRACT

Exposure of plants to adverse environmental conditions reduces their growth and productivity. Currently, seed priming with phytohormones is considered one of the most reliable and cost-effective approaches that can help alleviate the toxic effects of environmental stress. In this context, the present study aims to investigate the effect of priming alfalfa seeds with salicylic acid (SA) on oxidative stress markers, including malonyldialdehyde, protein content, activities of antioxidant enzymes, and expression of genes encoding these enzymes in leaves and roots of alfalfa (Gabes ecotype) grown under saline stress, iron deficiency, or both. Our results showed that the application of salt stress and iron deficiency separately or simultaneously induces changes in the activities of antioxidant enzymes, but these are organ- and stress-dependent. The Gabes ecotype was able to increase the activities of these enzymes under salt stress to alleviate oxidative damage. Indeed, priming seeds with 100 µM SA significantly increases the enzymatic activities of APX, GPX, CAT, and SOD. Therefore, this concentration can be considered optimal for the induction of iron deficiency tolerance. Our results showed not only that Gabes ecotype was able to tolerate salt stress by maintaining high expression of the Fe-SOD isoform, but also that the pretreatment of seeds with 100 µM SA improved the tolerance of this ecotype to iron deficiency by stimulating Fe-SOD expression and inhibiting CAT and APXc.


Subject(s)
Antioxidants , Iron Deficiencies , Antioxidants/metabolism , Medicago sativa/genetics , Salicylic Acid/pharmacology , Salinity , Seeds/metabolism , Superoxide Dismutase/metabolism , Gene Expression
3.
Plants (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34834627

ABSTRACT

The current work aimed to investigate the effect of seed priming with different agents (CaCl2, KCl, and KNO3) on germination and seedling establishment in seeds of the barley species of both Hordeum vulgare (L. Manel) and Hordeum maritimum germinated with three salt concentrations (0, 100, and 200 mM NaCl). The results showed that under unprimed conditions, salt stress significantly reduced the final germination rate, the mean daily germination, and the seedling length and dry weight. It led to a decrease in the essential nutrient content (iron, calcium, magnesium, and potassium) against an increase in sodium level in both of the barley species. Moreover, this environmental constraint provoked a membrane injury caused by a considerable increase in electrolyte leakage and the malondialdehyde content (MDA). Data analysis proved that seed priming with CaCl2, KCl, and KNO3 was an effective method for alleviating barley seed germination caused by salt stress to varying degrees. Different priming treatments clearly stimulated germination parameters and the essential nutrient concentration, in addition to increasing the seedling growth rate. The application of seed priming reduced the accumulation of sodium ions and mitigated the oxidative stress of seeds caused by salt. This mitigation was traduced by the maintenance of low levels of MDA and electrolyte leakage. We conclude that the priming agents can be classed into three ranges based on their efficacy on the different parameters analyzed; CaCl2 was placed in the first range, followed closely by KNO3, while the least effective was KCl, which placed in the third range.

4.
Plant Physiol Biochem ; 159: 392-399, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33293206

ABSTRACT

Iron (Fe) is one of the essential nutrients for plant growth which is involved in several physiological functions. Hence, there are intensive efforts to improve plant tolerance to Fe deficiency, by genotypic screening and by the use of adapted physiological tools. The intend of the current study was to explore the seed priming effect with salicylic acid (SA 0.25 mM) and hydrogen peroxide (H2O2 20 mM), either separately applied or combined, on plant growth, nutritional elements status (Fe and potassium K), root acidification and photosynthetic activity in two S. carnosa cultivars (Sidi Khlif and Kalbia) with different tolerance to such constraint. Under unprimed conditions, Fe deficiency decreased plant growth, chlorophyll concentration, in addition to Fe and K contents. Moreover, it affected the photosynthetic activity by inhibiting the net CO2 assimilation rate and increasing the transpiration rate of both cultivars, following a reduced water use efficiency. The changes above described were much less pronounced in Sidi Khlif than in Kalbia. The stomatal conductance increased in Fe-deficient leaves of both cultivars, suggesting that the photosynthesis impairment should be attributed to non-stomatal factors. Interestingly, priming seeds with both agents significantly improved the growth performance and the rhizosphere acidification of deficient S. carnosa plants. However, the D + SA + H2O2 treatment had the most beneficial effect on S. carnosa plant growth. The degree of this stimulation may vary depending on the cultivar, the tissue and the priming agent applied. This could be owing to the photosynthetic performance modulation, leading to more efficient nutrient uptake.


Subject(s)
Fabaceae , Hydrogen Peroxide , Iron , Salicylic Acid , Fabaceae/drug effects , Fabaceae/growth & development , Fabaceae/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen-Ion Concentration , Iron Deficiencies , Photosynthesis/drug effects , Plant Roots/metabolism , Salicylic Acid/pharmacology , Seeds/growth & development
5.
Acta Biol Hung ; 63(1): 97-112, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22453803

ABSTRACT

In order to explore the relationship between leaf hormonal status and source-sink relations in the response of symbiotic nitrogen fixation (SNF) to salt stress, three major phytohormones (cytokinins, abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid), sucrose phosphate synthase activity in source leaves and sucrolytic activities in sink organs were analysed in two lines of Medicago ciliaris (salt-tolerant TNC 1.8 and salt-sensitive TNC 11.9). SNF (measured as nitrogenase activity and amount of N-fixed) was more affected by salt treatment in the TNC 11.9 than in TNC 1.8, and this could be explained by a decrease in nodule sucrolytic activities. SNF capacity was reflected in leaf biomass production and in the sink activity under salinity, as suggested by the higher salt-induced decrease in the young leaf sucrolytic activities in the sensitive line TNC 11.9, while they were not affected in the tolerant line TNC 1.8. As a consequence of maintaining sink activities in the actively growing organs, the key enzymatic activity for synthesis of sucrose (sucrose phosphate synthase) was also less affected in the mature leaves of the more tolerant genotype. Ours results showed also that the major hormone factor associated with the relative tolerance of TNC 1.8 was the stimulation of abscisic acid concentration in young leaves under salt treatment. This stimulation may control photosynthetic organ growth and also may contribute to a certain degree in the maintenance of coordinated sink-source relationships. Therefore, ABA may be an important component which conserves sucrose synthesis in source leaves.


Subject(s)
Medicago/drug effects , Medicago/microbiology , Plant Growth Regulators/metabolism , Sinorhizobium/drug effects , Sodium Chloride/pharmacology , Stress, Physiological/physiology , Symbiosis/drug effects , Abscisic Acid/metabolism , Amino Acids, Cyclic/metabolism , Chlorophyll/metabolism , Cytokinins/metabolism , Medicago/physiology , Nitrogen Fixation/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Sinorhizobium/physiology , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...