Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 10(1): 5602, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811170

ABSTRACT

Invasive plant species threaten native biodiversity, ecosystems, agriculture, industry and human health worldwide, lending urgency to the search for predictors of plant invasiveness outside native ranges. There is much conflicting evidence about which plant characteristics best predict invasiveness. Here we use a global demographic survey for over 500 plant species to show that populations of invasive plants have better potential to recover from disturbance than non-invasives, even when measured in the native range. Invasives have high stable population growth rates in their invaded ranges, but this metric cannot be predicted based on measurements in the native ranges. Recovery from demographic disturbance is a measure of transient population amplification, linked to high levels of reproduction, and shows phylogenetic signal. Our results demonstrate that transient population dynamics and reproductive capacity can help to predict invasiveness across the plant kingdom, and should guide international policy on trade and movement of plants.


Subject(s)
Biodiversity , Introduced Species , Plants/classification , Agriculture , Demography , Ecosystem , Models, Biological , Phylogeny , Plant Development , Population Dynamics , Population Growth , Species Specificity
2.
Nat Ecol Evol ; 1(2): 29, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28812611

ABSTRACT

One of the best-supported patterns in life history evolution is that organisms cope with environmental fluctuations by buffering their most important vital rates against them. This demographic buffering hypothesis is evidenced by a tendency for temporal variation in rates of survival and reproduction to correlate negatively with their contribution to fitness. Here, we show that widespread evidence for demographic buffering can be artefactual, resulting from natural relationships between the mean and variance of vital rates. Following statistical scaling, we find no significant tendency for plant life histories to be buffered demographically. Instead, some species are buffered, whereas others have labile life histories with higher temporal variation in their more important vital rates. We find phylogenetic signal in the strength and direction of variance-importance correlations, suggesting that clades of plants are prone to being either buffered or labile. Species with simple life histories are more likely to be demographically labile. Our results suggest important evolutionary nuances in how species deal with environmental fluctuations.

3.
Ecol Evol ; 5(10): 1933-43, 2015 May.
Article in English | MEDLINE | ID: mdl-26045946

ABSTRACT

UNLABELLED: An important goal for invasive species research is to find key traits of species that predispose them to being invasive outside their native range. Comparative studies have revealed phenotypic and demographic traits that correlate with invasiveness among plants. However, all but a few previous studies have been performed in the invaded range, an approach which potentially conflates predictors of invasiveness with changes that happen during the invasion process itself. Here, we focus on wild plants in their native range to compare life-history traits of species known to be invasive elsewhere, with their exported but noninvasive relatives. Specifically, we test four hypotheses: that invasive plant species (1) are larger; (2) are more fecund; (3) exhibit higher fecundity for a given size; and (4) attempt to make seed more frequently, than their noninvasive relatives in the native range. We control for the effects of environment and phylogeny using sympatric congeneric or confamilial pairs in the native range. We find that invasive species are larger than noninvasive relatives. Greater size yields greater fecundity, but we also find that invasives are more fecund per-unit-size. SYNTHESIS: We provide the first multispecies, taxonomically controlled comparison of size, and fecundity of invasive versus noninvasive plants in their native range. We find that invasive species are bigger, and produce more seeds, even when we account for their differences in size. Our findings demonstrate that invasive plant species are likely to be invasive as a result of both greater size and constitutively higher fecundity. This suggests that size and fecundity, relative to related species, could be used to predict which plants should be quarantined.

SELECTION OF CITATIONS
SEARCH DETAIL