Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Vet Sci ; 170: 105187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422840

ABSTRACT

To assess the effects of the acute inflammatory response (AIR) induced by Escherichia coli lipopolysaccharide (LPS) on plasma and tissue disposition of florfenicol (FFC) and its metabolite florfenicol amine (FFC-a), after its intramuscular (IM) administration, twenty-two New Zealand rabbits were randomly distributed in two experimental groups: Group 1 (LPS) was treated with three intravenous doses of 2 µg LPS/kg bw, before an intramuscular dose of 20 mg/kg FFC twenty-four h after the first LPS or SS injection; Group 2 (Control) was treated with saline solution (SS) in equivalent volumes as LPS-treated group. Blood samples were collected before (T0) and at different times after FFC administration. Acute inflammatory response was assessed in a parallel study where significant increases in body temperature, C-reactive protein concentrations and leukopenia were observed in the group treated with LPS. In another two groups of rabbits, 4 h after FFC treatment, rabbits were euthanized and tissue samples were collected for analysis of FFC and FFC-a concentrations. Pharmacokinetic parameters of FFC that showed significantly higher values in LPS-treated rabbits compared with control rabbits were absorption half-life, area under the curve, mean residence time and clearance /F (Cl/F). Elimination half-life and mean residence time of FFC-a were significantly higher in LPS-treated rabbits, whereas the metabolite ratio of FFC-a decreased significantly. Significant differences in tissue distribution of FFC and FFC-a were observed in rabbits treated with LPS. Modifications in plasma and tissue disposition of FFC and FFC-a were attributed mainly to haemodynamic modifications induced by the AIR through LPS administration.


Subject(s)
Endotoxemia , Thiamphenicol , Thiamphenicol/analogs & derivatives , Rabbits , Animals , Lipopolysaccharides , Anti-Bacterial Agents , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Endotoxemia/veterinary , Escherichia coli/metabolism , Thiamphenicol/pharmacokinetics , Inflammation/veterinary , Half-Life , Injections, Intramuscular/veterinary
2.
Xenobiotica ; 47(5): 408-415, 2017 May.
Article in English | MEDLINE | ID: mdl-27378216

ABSTRACT

1. The purpose of this study was to understand the effects of the acute inflammatory response (AIR) induced by Escherichia coli lipopolysaccharide (LPS) on florfenicol (FFC) and FFC-amine (FFC-a) plasma and tissue concentrations. 2. Ten Suffolk Down sheep, 60.5 ± 4.7 kg, were distributed into two experimental groups: group 1 (LPS) treated with three intravenous doses of 1 µg/kg bw of LPS at 24, 16, and 0.75 h (45 min) before FFC treatment; group 2 (Control) was treated with saline solution (SS) in parallel to group 1. An IM dose of 20 mg FFC/kg was administered at 0.75 h after the last injection of LPS or SS. Blood and tissue samples were taken after FFC administration. 3. The plasma AUC0-4 h values of FFC were higher (p = 0.0313) in sheep treated with LPS (21.8 ± 2.0 µg·min/mL) compared with the control group (12.8 ± 2.3 µg·min/mL). Lipopolysaccharide injections increased FFC concentrations in kidneys, spleen, and brain. Low levels of plasma FFC-a were observed in control sheep (Cmax = 0.14 ± 0.01 µg/mL) with a metabolite ratio (MR) of 4.0 ± 0.87%. While in the LPS group, Cmax increased slightly (0.25 ± 0.01 µg/mL), and MR decreased to 2.8 ± 0.17%. 4. The changes observed in the plasma and tissue concentrations of FFC were attributed to the pathophysiological effects of LPS on renal hemodynamics that modified tissue distribution and reduced elimination of the drug.


Subject(s)
Anti-Bacterial Agents/metabolism , Endotoxemia/veterinary , Sheep/metabolism , Thiamphenicol/analogs & derivatives , Animals , Endotoxemia/metabolism , Escherichia coli , Lipopolysaccharides , Sheep/microbiology , Thiamphenicol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...