Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neoplasma ; 70(3): 416-429, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37498074

ABSTRACT

Glycosylation is a posttranslational modification of proteins affecting numerous cellular functions. A growing amount of evidence confirms that aberrant glycosylation is involved in pathophysiological processes, including tumor development and progression. Carbonic anhydrase IX (CAIX) is a transmembrane protein whose expression is strongly induced in hypoxic tumors, which makes it an attractive target for anti-tumor therapy. CAIX facilitates the maintenance of intracellular pH homeostasis through its catalytic activity, which is linked with extracellular pH acidification promoting a more aggressive phenotype of tumor cells. The involvement of CAIX in destabilizing cell-cell contacts and the focal adhesion process also contributes to tumor progression. Previous research shows that CAIX is modified with N-glycans, O-glycans, and glycosaminoglycans (GAG). Still, the impact of glycosylation on CAIX functions has yet to be fully elucidated. By preparing stably transfected cells expressing mutated forms of CAIX, unable to bind glycans at their defined sites, we have attempted to clarify the role of glycan structures in CAIX functions. All three types of prepared mutants exhibited decreased adhesion to collagen. By surface plasmon resonance, we proved direct binding between CAIX and collagen. Cells lacking glycosaminoglycan modification of CAIX also showed reduced migration and invasion, indicating CAIX glycosaminoglycans' involvement in these processes. Analysis of signaling pathways affected by the loss of GAG component from CAIX molecule revealed decreased phosphorylation of c-Jun, of p38α kinase, focal adhesion kinase, and reduced level of heat shock protein 60 in cells cultured in hypoxia. Cells expressing CAIX without GAG exhibited increased metabolon formation and increased extracellular pH acidification. We also observed reduced CAIX GAG glycans in the inflammatory environment in hypoxia, pathophysiological conditions reflecting in vivo tumor microenvironment. Understanding the glycan involvement in the characteristics and functions of possible targets of cancer treatment, such as cell surface localized CAIX, could improve the therapy, as many drugs target glycan parts of a protein.


Subject(s)
Antigens, Neoplasm , Biomarkers, Tumor , Humans , Antigens, Neoplasm/genetics , Biomarkers, Tumor/metabolism , Carbonic Anhydrase IX/metabolism , Cell Line, Tumor , Glycosaminoglycans , Glycosylation , Hypoxia
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901756

ABSTRACT

Carbonic anhydrase IX (CA IX) is recognized as an excellent marker of hypoxia and an adverse prognostic factor in solid tumors, including breast cancer (BC). Clinical studies confirm that soluble CA IX (sCA IX), shed into body fluids, predicts the response to some therapeutics. However, CA IX is not included in clinical practice guidelines, possibly due to a lack of validated diagnostic tools. Here, we present two novel diagnostic tools-a monoclonal antibody for CA IX detection by immunohistochemistry and an ELISA kit for the detection of sCA IX in the plasma-validated on a cohort of 100 patients with early BC. We confirm that tissue CA IX positivity (24%) correlates with tumor grading, necrosis, negative hormone receptor status, and the TNBC molecular subtype. We show that antibody IV/18 can specifically detect all subcellular forms of CA IX. Our ELISA test provides 70% sensitivity and 90% specificity. Although we showed that this test could detect exosomes in addition to shed CA IX ectodomain, we could not demonstrate a clear association of sCA IX with prognosis. Our results indicate that the amount of sCA IX depends on subcellular CA IX localization, but more strictly on the molecular composition of individual molecular subtypes of BC, particularly on metalloproteinases inhibitor expression.


Subject(s)
Breast Neoplasms , Carbonic Anhydrases , Female , Humans , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Hypoxia
3.
Oncol Rep ; 49(2)2023 02.
Article in English | MEDLINE | ID: mdl-36524367

ABSTRACT

Carbonic anhydrase IX (CA IX) is a transmembrane enzyme participating in adaptive responses of tumors to hypoxia and acidosis. CA IX regulates pH, facilitates metabolic reprogramming, and supports migration, invasion and metastasis of cancer cells. Extracellular domain (ECD) of CA IX can be shed to medium and body fluids by a disintegrin and metalloproteinase (ADAM) 17. Here we show for the first time that CA IX ECD shedding can be also executed by ADAM10, a close relative of ADAM17, via an overlapping cleavage site in the stalk region of CA IX connecting its exofacial catalytic site with the transmembrane region. This finding is supported by biochemical evidence using recombinant human ADAM10 protein, colocalization of ADAM10 with CA IX, ectopic expression of a dominant­negative mutant of ADAM10 and RNA interference­mediated suppression of ADAM10. Induction of the CA IX ECD cleavage with ADAM17 and/or ADAM10 activators revealed their additive effect. Similarly, additive effect was observed with an ADAM17­inhibiting antibody and an ADAM10­preferential inhibitor GI254023X. These data indicated that ADAM10 is a CA IX sheddase acting on CA IX non­redundantly to ADAM17.


Subject(s)
ADAM Proteins , Carbonic Anhydrase IX , Humans , ADAM Proteins/chemistry , ADAM Proteins/metabolism , ADAM10 Protein/chemistry , ADAM10 Protein/metabolism , ADAM17 Protein/chemistry , ADAM17 Protein/metabolism , Carbonic Anhydrase IX/chemistry , Carbonic Anhydrase IX/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism
4.
Acta Virol ; 66(3): 228-237, 2022.
Article in English | MEDLINE | ID: mdl-35850521

ABSTRACT

Slovakia is a country with only 5.45 million inhabitants. However, the past two years of the COVID-19 pandemic have shown huge inter-regional differences. These were represented by different numbers of diagnosed SARS-CoV-2 cases and the vaccination rates in the regions, as well as by the willingness of the inhabitants to comply with anti-pandemic measures or to undergo testing. The occurrence of such regional disparities provided a rational basis for monitoring the epidemic situation within smaller areas, e.g. at city level. Trencin is a medium-sized Slovak county town with about 55 000 inhabitants. The city administration gave its residents the opportunity to assess their current level of antibodies against the SARS-CoV-2 virus, and received an additional benefit in the form of data on the real epidemic situation in the city, which helped in further management of anti-pandemic measures. The primary aim of the study, conducted in January and February 2022, was to determine the levels of antibodies against the SARS-CoV-2 virus in the inhabitants of Trencin. The results showed that 75% of the study participants, representing the adult population of the city, had detectable IgG antibodies against the SARS-CoV-2 spike protein. Noteworthy, at the time of the study, 13% of the Trencin city population who were unaware of overcoming COVID-19 had specific antibodies against the virus. Furthermore, the antibody levels in recovered unvaccinated subjects increased not only with the severity of their COVID-19 symptoms, but also after multiple recoveries from the disease. On the other hand, the severity of side effects after vaccination did not influence the antibody levels. The results of the study are in line with the current view that hybrid immunity (vaccination plus SARS-CoV-2 infection in any order) offers greater protection than immunity elicited by vaccination or COVID-19 separately. Keywords: SARS-CoV-2 coronavirus; COVID-19; ELISA; seroprevalence; antibodies; vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/epidemiology , Humans , Immunoglobulin G , Pandemics , Pilot Projects , Seroepidemiologic Studies , Slovakia/epidemiology , Spike Glycoprotein, Coronavirus
5.
Cancer Metab ; 10(1): 3, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35109923

ABSTRACT

BACKGROUND: Hypoxia in the tumor microenvironment (TME) is often the main factor in the cancer progression. Moreover, low levels of oxygen in tumor tissue may signal that the first- or second-line therapy will not be successful. This knowledge triggers the inevitable search for different kinds of treatment that will successfully cure aggressive tumors. Due to its exclusive expression on cancer cells, carbonic anhydrase IX belongs to the group of the most precise targets in hypoxic tumors. CA IX possesses several exceptional qualities that predetermine its crucial role in targeted therapy. Its expression on the cell membrane makes it an easily accessible target, while its absence in healthy corresponding tissues makes the treatment practically harmless. The presence of CA IX in solid tumors causes an acidic environment that may lead to the failure of standard therapy. METHODS: Parental mouse hybridomas (IV/18 and VII/20) were humanized to antibodies which were subsequently named CA9hu-1 and CA9hu-2. From each hybridoma, we obtained 25 clones. Each clone was tested for antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activity, affinity, extracellular pH measurement, multicellular aggregation analysis, and real-time monitoring of invasion with the xCELLigence system. RESULTS: Based on the results from in vivo experiments, we have selected mouse monoclonal antibodies VII/20 and IV/18. The first one is directed at the conformational epitope of the catalytic domain, internalizes after binding to the antigen, and halts tumor growth while blocking extracellular acidification. The second targets the sequential epitope of the proteo-glycan domain, does not internalize, and is able to block the attachment of cancer cells to the matrix preventing metastasis formation. In vitro experiments prove that humanized versions of the parental murine antibodies, CA9hu-1 and CA9hu-2, have preserved these characteristics. They can reverse the failure of standard therapy as a result of an acidic environment by modulating the TME, and both are able to induce an immune response and have high affinity, as well as ADCC and CDC activity. CONCLUSION: CA9hu-1 and CA9hu-2 are the very first humanized antibodies against CA IX that are likely to become suitable therapies for hypoxic tumors. These antibodies can be applied in the treatment therapy of primary tumors and suppression of metastases formation.

6.
Acta Virol ; 65(4): 420-432, 2021.
Article in English | MEDLINE | ID: mdl-34796716

ABSTRACT

Cross-sectional seroprevalence study of SARS-CoV-2 IgG antibodies was accomplished in the Slovak Academy of Sciences to inform authorities of research institutions about the situation at their workplaces, to assess the risk of next exposure to SARS-CoV-2, and to guide decisions on institutional measures sustaining essential research in evolving epidemic situation. Study participants provided informed consent, anamnestic information, and self-collected dry blood spot samples that were analyzed by ELISA for SARS-CoV-2 S protein-specific IgG antibodies. Relative antibody levels detected in 1928 subjects showed seroprevalence of 84.13% and led to the following main findings consistent with the current knowledge: (1) mRNA-based vaccines induce better humoral response compared to adenovirus vaccines, (2) antibody levels reflect severity of COVID-19 symptoms, (3) post-COVID vaccination results in marked elevation of IgG levels particularly in asymptomatic and mild cases, (4) antibody levels decrease with increasing time elapsed from vaccination or COVID-19. In addition, data sorting to distinct research institutes and their clustering to three principal scientific sections of the Slovak Academy of Sciences revealed marked differences in seroprevalence, and allowed to identify workplaces with relatively high seropositivity and response rate that can potentially provide a safer working environment than those, where seroprevalence was low or unknown due to low participation. Thus, findings of this study can have direct implications on management decisions during the next pandemic development, with the necessity to keep in mind the phenomenon of time-dependent immunity waning and current spread of more contagious Delta variant of SARS-CoV-2. Keywords: SARS-CoV-2 coronavirus; COVID-19; spike protein; seroprevalence; antibodies; vaccination.


Subject(s)
COVID-19 , Academies and Institutes , Antibodies, Viral , Cross-Sectional Studies , Humans , Immunoglobulin G , SARS-CoV-2 , Seroepidemiologic Studies , Slovakia/epidemiology , Spike Glycoprotein, Coronavirus , Vaccination
7.
Mater Sci Eng C Mater Biol Appl ; 127: 112259, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225844

ABSTRACT

This study is aimed to evaluate the influence of mechanical surface treatment on the degradation response, cell survival, adhesion, and proliferation of a TiMg composite material. Two sets of the TiMg samples with different surface characteristics were studied: i) as-machined samples (TiMg-T) and ii) samples with a mechanically modified surface (TiMg-P). Surface roughness was determined using a confocal microscope. Degradation rates (DR) were evaluated in artificial Plasma, HBSS, and NaCl 0.9%. The cell viability was evaluated using an MTT assay. The initial cell adhesion and spreading were investigated using the direct contact assay. An xCELLigence system was employed to provide real-time cell proliferation. The focal adhesion and cell morphological changes were also examined. The DR of TiMg-P decreased by ⁓5 times compared with that of TiMg-T. Surface of the TiMg-P specimens after 72 h exposure to either HBSS or Plasma was passivated by a layer enriched with bioactive Ca/P species. The cell viability of L929 and Saos-2 after 72 h incubation for TiMg-P was 94.6% and 94.8% compared with 73.8% and 74.3% obtained for TiMg-T, respectively. The direct contact assay showed that the initial adhesion and spreading of the L929 cells incubated with TiMg-P was more pronounced compared with that of TiMg-T. The proliferation rate of Saos-2 cells incubated with TiMg-P was higher when compared with that of TiMg-T, and was almost comparable to that of the DMEM-blank between the 24 and 72 h interval. TiMg-P had a pronounced difference in the number and area of Focal Adhesions (FA) compared with that of TiMg-T. The morphology of cells incubated with TiMg-P was not altered. The results confirmed that the smooth and less strained surface of the TiMg-P samples effectively improved the in-vitro degradation response, cell survival, adhesion, and proliferation.


Subject(s)
Titanium , Cell Adhesion , Cell Proliferation , Cell Survival , Surface Properties
8.
Colloids Surf B Biointerfaces ; 205: 111893, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34116397

ABSTRACT

Antibody-modified magnetic nanoparticles were prepared to study their cellular uptake in 3D multicellular spheroidal cell cultures. For this purpose, carbonic anhydrase IX specific monoclonal antibody VII/20 was selected to conjugate on the surface of positively charged glycine coated magnetic nanoparticles in a form of a stable magnetic fluid. In this work, glycine-functionalized magnetic nanoparticles were characterized by different methods. X-ray photoelectron analysis confirmed the binding of glycine to the magnetic nanoparticles, and quantification of the glycine coating on the surface of the magnetic nanoparticles was conducted by thermogravimetric analysis. The optimal weight ratio of glycine to magnetic nanoparticles was determined to be 5 showing good colloid stability due to the high surface charge density of protonated glycine coating shown by the great zeta potential (⁓40 mV). The antibody conjugation to the functionalized magnetic nanoparticles was performed at an antibody to magnetic nanoparticles weight ratio equal to 0.5. Applications of antibody-modified magnetic nanoparticles in cancer therapy rely on their ability to specifically target cancer tissues and enter the tumour intracellular space. Here, we show that antibody coupled nanoparticle internalization was triggered by selective binding to tumour cells expressing hypoxic marker carbonic anhydrase IX. Moreover, our results confirmed specific penetration of conjugated nanoparticles into the tumour cell spheroids.


Subject(s)
Nanoparticles , Neoplasms , Carbonic Anhydrase IX , Glycine , Humans , Magnetic Iron Oxide Nanoparticles , Neoplasms/drug therapy
9.
Br J Cancer ; 122(11): 1590-1603, 2020 05.
Article in English | MEDLINE | ID: mdl-32210366

ABSTRACT

BACKGROUND: Carbonic anhydrase IX (CA IX) is a hypoxia-induced enzyme regulating tumour pH and facilitating cell migration/invasion. It is primarily expressed as a transmembrane cell-surface protein, but its ectodomain can be shed by ADAM17 to extracellular space. This study aims to elucidate the impact of CA IX shedding on cancer cells. METHODS: We generated a non-shed CA IX mutant by deletion of amino acids 393-402 from the stalk region and studied its phenotypic effects compared to full-length, shedding-competent CA IX using a range of assays based on immunodetection, confocal microscopy, in vitro real-time cell monitoring and in vivo tumour cell inoculation using xenografted NMRI and C57BL/6J female mice. RESULTS: We demonstrated that the impairment of shedding does not alter the ability of CA IX to bind ADAM17, internalise, form oligomers and regulate pH, but induces cancer-promoting changes in extracellular proteome. Moreover, it affects intrinsic properties of cells expressing the non-shed variant, in terms of their increased ability to migrate, generate primary tumours and form metastatic lesions in lungs. CONCLUSIONS: Our results show that the ectodomain shedding controls pro-tumorigenic and pro-metastatic roles of the cell-associated CA IX and suggest that this phenomenon should be considered when developing CA IX-targeted therapeutic strategies.


Subject(s)
Carbonic Anhydrase IX/metabolism , Carcinogenesis/metabolism , Neoplasms/pathology , ADAM17 Protein/metabolism , Animals , Carcinogenesis/pathology , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness/pathology , Neoplasms/metabolism , Phenotype
10.
Int J Mol Sci ; 21(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905844

ABSTRACT

In contrast to human carbonic anhydrase IX (hCA IX) that has been extensively studied with respect to its molecular and functional properties as well as regulation and expression, the mouse ortholog has been investigated primarily in relation to tissue distribution and characterization of CA IX-deficient mice. Thus, no data describing transcriptional regulation and functional properties of the mouse CA IX (mCA IX) have been published so far, despite its evident potential as a biomarker/target in pre-clinical animal models of tumor hypoxia. Here, we investigated for the first time, the transcriptional regulation of the Car9 gene with a detailed description of its promoter. Moreover, we performed a functional analysis of the mCA IX protein focused on pH regulation, cell-cell adhesion, and migration. Finally, we revealed an absence of a soluble extracellular form of mCA IX and provided the first experimental evidence of mCA IX presence in exosomes. In conclusion, though the protein characteristics of hCA IX and mCA IX are highly similar, and the transcription of both genes is predominantly governed by hypoxia, some attributes of transcriptional regulation are specific for either human or mouse and as such, could result in different tissue expression and data interpretation.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase IX/metabolism , Gene Expression Regulation , Animals , Antigens, Neoplasm/chemistry , Binding Sites , Carbonic Anhydrase IX/chemistry , Cell Adhesion , Cell Movement , Exosomes , Humans , Hydrogen-Ion Concentration , Hypoxia , Mice , Promoter Regions, Genetic , Protein Domains
11.
Colloids Surf B Biointerfaces ; 163: 236-245, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29306846

ABSTRACT

Amino-modified magnetic nanoparticles were prepared by direct chemisorption of biocompatible d,l-lysine (DLL) on electrostatically stabilized magnetic nanoparticles with the aim to bind specific antibodies (Ab) able to detect cancer cells. The magnetic nanoparticles prepared by coprecipitation were stabilized in an acidic medium. A full optimization study of amino modification performed by UV/Vis spectroscopy and Dynamic Light Scattering measurement (DLS) confirmed an optimal DLL/Fe3O4 weight ratio of 2. The sample was subjected to complex characterizations using different techniques such as UV/Vis, FTIR and X-ray photoelectron spectroscopies (XPS) together with transmission electron microscopy and size/zeta potential measurements. While FTIR spectroscopy, UV/Vis spectroscopy and XPS confirmed the successful amino modification of Fe3O4 nanoparticles, a characterization using a vibrating sample magnetometer (VSM) indicated superparamagnetic behavior in all the prepared samples, suggesting that the coating process did not significantly affect the size and structure of the Fe3O4 nanoparticles. Magnetic nanoparticles with the optimal DLL content were conjugated with the M75 monoclonal antibody specific to carbonic anhydrase IX (CA IX), which is considered one of the best markers of tumor hypoxia and a prognostic indicator of cancer progression. The results demonstrate that all tested cell lines survived and even proliferated in the presence of amino-modified magnetic nanoparticles. Even the tubulin cytoskeletal structure was not disrupted after the exposure of cells to surface-modified magnetic nanoparticles. In contrast, internalization of the antibody-conjugated magnetic nanoparticles led to abrogation of the formation of long and extended microtubules. Finally, the finding supports the view that the M75 antibody conjugated to nanoparticles mediates their specific uptake and intracellular accumulation and that the antibody conjugated magnetic nanoparticles can be potentially used for the selective growth inhibition of CA IX-expressing cells.


Subject(s)
Ferric Compounds/chemistry , Lysine/chemistry , Magnetite Nanoparticles/chemistry , Neoplasms/diagnosis , Actin Cytoskeleton/metabolism , Animals , Antibodies/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Hydrodynamics , Immobilized Proteins/metabolism , Magnetite Nanoparticles/ultrastructure , Mice , Molecular Weight , Neoplasms/pathology , Particle Size , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staining and Labeling , Tubulin/metabolism
12.
BMC Cancer ; 16: 239, 2016 Mar 19.
Article in English | MEDLINE | ID: mdl-26993100

ABSTRACT

BACKGROUND: Carbonic anhydrase IX (CA IX) is a tumor-associated, highly active, transmembrane carbonic anhydrase isoform regulated by hypoxia and implicated in pH control and adhesion-migration-invasion. CA IX ectodomain (ECD) is shed from the tumor cell surface to serum/plasma of patients, where it can signify cancer prognosis. We previously showed that the CA IX ECD release is mediated by disintegrin and metalloproteinase ADAM17. Here we investigated the CA IX ECD shedding in tumor cells undergoing apoptosis in response to cytotoxic drugs, including cycloheximide and doxorubicin. METHODS: Presence of cell surface CA IX was correlated to the extent of apoptosis by flow cytometry in cell lines with natural or ectopic CA IX expression. CA IX ECD level was assessed by ELISA using CA IX-specific monoclonal antibodies. Effect of recombinant CA IX ECD on the activation of molecular pathways was evaluated using the cell-based dual-luciferase reporter assay. RESULTS: We found a significantly lower occurrence of apoptosis in the CA IX-positive cell subpopulation than in the CA IX-negative one. We also demonstrated that the cell-surface CA IX level dropped during the death progress due to an increased ECD shedding, which required a functional ADAM17. Inhibitors of metalloproteinases reduced CA IX ECD shedding, but not apoptosis. The CA IX ECD release induced by cytotoxic drugs was connected to elevated expression of CA IX in the surviving fraction of cells. Moreover, an externally added recombinant CA IX ECD activated a pathway driven by the Nanog transcription factor implicated in epithelial-mesenchymal transition and stemness. CONCLUSIONS: These findings imply that the increased level of the circulating CA IX ECD might be useful as an indicator of an effective antitumor chemotherapy. Conversely, elevated CA IX ECD might generate unwanted effects through autocrine/paracrine signaling potentially contributing to resistance and tumor progression.


Subject(s)
ADAM17 Protein/genetics , Carbonic Anhydrase IX/genetics , Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , ADAM17 Protein/metabolism , Antibodies, Monoclonal/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Carbonic Anhydrase IX/administration & dosage , Carbonic Anhydrase IX/metabolism , Cell Hypoxia/genetics , Cycloheximide/administration & dosage , Female , HeLa Cells , Humans , Male , Neoplasms/pathology
13.
Int J Oncol ; 45(6): 2455-67, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25230982

ABSTRACT

G250 (Girentuximab) is a chimeric IgG1 monoclonal antibody (MAb) currently being evaluated as an immunotherapy for kidney cancer. It targets carbonic anhydrase protein (CA Ⅸ), a transmembrane carbonic anhydrase (CA) isoform, which is regulated by VHL/HIF pathway and hence expressed in the majority of renal cell carcinomas (RCCs) as well as in hypoxic non­RCC tumours. CA Ⅸ functions in pH regulation and cell migration/invasion, and supports tumour cell survival in hypoxia and/or acidosis. It contains a highly active extracellular catalytic domain (CA) extended N-terminally with a proteoglycan-like region and C-terminally with short transmembrane and intracellular regions. Here we characterize the binding and internalization properties of G250, as well as its therapeutic effects in animal model, and discuss the impact of G250­mediated immunotherapy in non­RCC tumours. We demonstrated that G250 MAb recognizes a conformational epitope in the CA domain, detects the soluble CA Ⅸ ectodomain (ECD), but not the splicing variant, and does not cross-react with CA Ⅰ, Ⅱ, and Ⅻ isoforms. We showed that G250 internalizes via clathrin-coated vesicles, escapes degradation in lysosomes and enters the recycling pathway via the perinuclear compartment. This results in long intracellular persistence and enables consecutive internalization cycles. Moreover, the recycled antibody maintains an intact Fc portion potentially capable of continuous induction of antibody-dependent cell-mediated cytotoxicity (ADCC) response, thus explaining its therapeutic efficacy. Finally, we showed that G250 treatment is effective against HT-29 colorectal carcinoma xenografts that differ from RCC by more heterogeneous, hypoxia-related expression of CA Ⅸ. These results suggest potential therapeutic usefulness of the G250 MAb in non-RCC tumours.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antigens, Neoplasm/biosynthesis , Carbonic Anhydrases/biosynthesis , Colorectal Neoplasms/drug therapy , Immunotherapy , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity , Antigens, Neoplasm/immunology , Carbonic Anhydrase IX , Carbonic Anhydrases/immunology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , HT29 Cells , Humans , Immunoglobulin G/immunology , Mice , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...