Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 143(3): 243-257, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37922454

ABSTRACT

ABSTRACT: Regulation of lineage biases in hematopoietic stem and progenitor cells (HSPCs) is pivotal for balanced hematopoietic output. However, little is known about the mechanism behind lineage choice in HSPCs. Here, we show that messenger RNA (mRNA) decay factors regnase-1 (Reg1; Zc3h12a) and regnase-3 (Reg3; Zc3h12c) are essential for determining lymphoid fate and restricting myeloid differentiation in HSPCs. Loss of Reg1 and Reg3 resulted in severe impairment of lymphopoiesis and a mild increase in myelopoiesis in the bone marrow. Single-cell RNA sequencing analysis revealed that Reg1 and Reg3 regulate lineage directions in HSPCs via the control of a set of myeloid-related genes. Reg1- and Reg3-mediated control of mRNA encoding Nfkbiz, a transcriptional and epigenetic regulator, was essential for balancing lymphoid/myeloid lineage output in HSPCs in vivo. Furthermore, single-cell assay for transposase-accessible chromatin sequencing analysis revealed that Reg1 and Reg3 control the epigenetic landscape on myeloid-related gene loci in early stage HSPCs via Nfkbiz. Consistently, an antisense oligonucleotide designed to inhibit Reg1- and Reg3-mediated Nfkbiz mRNA degradation primed hematopoietic stem cells toward myeloid lineages by enhancing Nfkbiz expression. Collectively, the collaboration between posttranscriptional control and chromatin remodeling by the Reg1/Reg3-Nfkbiz axis governs HSPC lineage biases, ultimately dictating the fate of lymphoid vs myeloid differentiation.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Cell Lineage/genetics , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Hematopoiesis/genetics , RNA, Messenger/metabolism , Cell Differentiation/genetics
2.
Nat Biotechnol ; 40(9): 1360-1369, 2022 09.
Article in English | MEDLINE | ID: mdl-35449415

ABSTRACT

Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).


Subject(s)
Neoplasms , Transcriptome , Animals , Gene Expression Profiling/methods , Mice , Neoplasms/genetics , Single-Cell Analysis/methods , Software , Transcriptome/genetics , Exome Sequencing
3.
Life Sci Alliance ; 3(4)2020 04.
Article in English | MEDLINE | ID: mdl-32132179

ABSTRACT

Angiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here, we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter. Accordingly, down-regulation of bach2a hinders blood vessel formation and impairs lymphatic sprouting in a Vegfc-dependent manner during zebrafish embryonic development. In contrast, BACH1 overexpression enhances intratumoral blood vessel density and peritumoral lymphatic vessel diameter in ovarian and lung mouse tumor models. The effects on the vascular compartment correlate spatially and temporally with BACH1 transcriptional regulation of VEGFC expression. Altogether, our results uncover a novel role for the BACH/VEGFC signaling axis in lymphatic formation during embryogenesis and cancer, providing a novel potential target for therapeutic interventions.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor C/genetics , Zebrafish Proteins/genetics , Angiogenesis Modulating Agents/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Fanconi Anemia Complementation Group Proteins/metabolism , Female , Gene Expression Regulation, Developmental/genetics , Humans , Lymphangiogenesis/physiology , Lymphatic Vessels/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Morphogenesis , Signal Transduction , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Zebrafish/embryology , Zebrafish Proteins/metabolism
4.
Immunity ; 48(5): 951-962.e5, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768178

ABSTRACT

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.


Subject(s)
Immunologic Memory/immunology , Killer Cells, Natural/immunology , Transcriptome/immunology , Uterus/immunology , Animals , Cell Line, Tumor , Decidua/immunology , Decidua/metabolism , Female , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Pregnancy , Uterus/cytology , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...