Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 10(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34578220

ABSTRACT

The aim of this pilot study was to determine viral loads and distribution over the total length, at short distances, and in the separate layers of the intestine of virus-infected animals for future inactivation studies. Two calves, two pigs, and two goats were infected with bovine viral diarrhoea virus (BVDV), classical swine fever virus (CSFV), and peste des petits ruminants virus (PPRV), respectively. Homogenously distributed maximum BVDV viral loads were detected in the ileum of both calves, with a mean titer of 6.0 log10 TCID50-eq/g. The viral loads in colon and caecum were not distributed homogenously. In one pig, evenly distributed CSFV mean viral loads of 4.5 and 4.2 log10 TCID50-eq/g were found in the small and large intestines, respectively. Mucosa, submucosa, and muscular layer/serosa showed mean viral loads of 5.3, 3.4, and 4.0 log10 TCID50-eq/g, respectively. Homogenous distribution of PPRV was shown in the ileum of both goats, with a mean viral load of 4.6 log10 TCID50-eq/g. Mean mucosa, submucosa, and muscular layer/serosa viral loads were 3.5, 2.8, and 1.7 log10 TCID50-eq/g, respectively. This pilot study provides essential data for setting up inactivation experiments with intestines derived from experimentally infected animals, in which the level and the homogeneous distribution of intestinal viral loads are required.

2.
Vaccines (Basel) ; 9(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068610

ABSTRACT

Classical swine fever is a highly contagious and deadly disease in swine. The disease can be controlled effectively by vaccination with an attenuated virus known as the "Chinese" (C)-strain. A single vaccination with the C-strain provides complete protection against highly virulent isolates within days after vaccination, making it one of the most efficacious veterinary vaccines ever developed. A disadvantage of the C-strain is that vaccinated animals cannot be serologically differentiated from animals that are infected with wild-type Classical swine fever virus. Previously, a C-strain-based vaccine with a stable deletion in the E2 structural glycoprotein was developed, which allows for differentiation between infected and vaccinated animals (DIVA). The resulting vaccine, which we named C-DIVA, is compatible with a commercial E2 ELISA, modified to render it suitable as a DIVA test. In the present work, three groups of eight piglets were vaccinated with escalating doses of the C-DIVA vaccine and challenged two weeks after vaccination. One group of four unvaccinated piglets served as controls. Piglets were monitored for clinical signs until three weeks after challenge and blood samples were collected to monitor viremia, leukocyte and thrombocyte levels, and antibody responses. The presence of challenge virus RNA in oropharyngeal swabs was investigated to first gain insight into the potential of C-DIVA to prevent shedding. The results demonstrate that a single vaccination with 70 infectious virus particles of C-DIVA protects pigs from the highly virulent Brescia strain.

3.
Pathogens ; 10(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557372

ABSTRACT

Animal intestines are the source of edible sausage casings, which are traded worldwide and may come from areas where notifiable infectious animal diseases are prevalent. To estimate the risks of virus contamination, knowledge about the quantity of virus and decimal reduction values of the standard preservation method by salting is of great importance. A literature search, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was performed in search engine CAB Abstracts to determine the viral load of 14 relevant animal viruses in natural casings or intestines. Only a very limited number of scientific publications per virus were found and viral loads in the intestines varied from high for ASFV (five publications), BVDV (3), CSFV (6), PPRV (3), RPV(2) and TGEV (3) to moderate for PEDV (2) and SVDV (3), low for HEV (2) and FMDV (5), very low for VESV (1) and negative for PrV (2) and VSV (1). PRRSV was found in intestines, however, viral titers were not published. Three viruses (BVDV, CSFV and PPRV) with high viral loads were selected to search for their inactivation kinetics. For casings, no inactivation data were found, however, thermal inactivation data of these viruses were available, but differed in quantity, quality and matrices. In conclusion, important data gaps still exist when it comes to the quantitative inactivation of viruses in sausage casings or livestock intestines.

4.
Vet Microbiol ; 238: 108424, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31648720

ABSTRACT

Natural casings, to be used as sausage containers, are being traded worldwide and may be contaminated with contagious viruses. Standard processing of such natural casings is by salt treatment with a duration of 30 days before shipment. Since information is lacking about the efficacy of these virus inactivation procedures, an in vitro 3D collagen matrix model, mimicking natural casings, was developed previously to determine the efficacy of salt to inactivate specific viruses. To validate this model, a comparison in vivo experiment was performed using intestines of pigs experimentally infected with African swine fever virus (ASFV) and classical swine fever virus (CSFV). Decimal reduction (D) values, were determined at 4 °C, 12 °C, 20 °C and 25 °C. The standard salt processing procedure showed an efficient inactivation of ASFV and CSFV over time in a temperature dependent way. Dintestine values of both viruses, treated with the standard salt treatment, were in line with the Dcollagen values. It was concluded that these results underline the suitability of the 3D collagen matrix model to determine virus inactivation and to replace animal experiments. Furthermore, an increase in storage time for standard salt processed casings derived from CSFV endemic regions is highly recommended for an efficient inactivation of CSFV.


Subject(s)
Classical Swine Fever Virus/drug effects , Classical Swine Fever/virology , Food Microbiology/methods , Intestines/virology , Salts/pharmacology , Virus Inactivation/drug effects , Animals , Swine
5.
J Virol Methods ; 247: 114-118, 2017 09.
Article in English | MEDLINE | ID: mdl-28545817

ABSTRACT

Most serological assays detect antibody responses in biological samples through affinity of serum antibodies for antigens provided in the assay. Certain antigens, however, may be difficult to produce and/or may contain unwanted epitopes. In these cases, a practical alternative may be the use of peptides as representatives for specific epitopes. Peptides can be obtained after purification in large quantities for a modest price, but screening of a large set of peptides during development may be relatively expensive. To cut costs of screening peptides for a new serological assay, the concept was investigated of using cheap non-purified (crude) peptides instead of purified peptides. Peptides were selected that represent three well-described linear epitopes of viral proteins: VP2 of canine parvovirus (CPV), gp41 of human immunodeficiency virus (HIV) and E2 of classical swine fever virus (CSFV). Crude and purified biotinylated peptides with either a short or long spacer between the biotin and the epitope were used to test their capability to bind antibodies in a bead-based suspension array. The results show that, in a bead-based suspension array, crude peptides can function as antigen for specific monoclonal antibodies, and that the acquired signals are less than with purified peptides. CSFV-derived crude peptides were also able to detect specific antibodies in swine serum, indicating the applicability of crude peptides for pre-screening large numbers of different peptides during the development of serological peptide-based assays.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Epitopes/immunology , Epitopes/isolation & purification , Mass Screening/methods , Serologic Tests/methods , Animals , Classical Swine Fever Virus/immunology , Dogs , HIV , Humans , Parvovirus, Canine , Swine , Virus Diseases/diagnosis
6.
J Virol Methods ; 235: 15-20, 2016 09.
Article in English | MEDLINE | ID: mdl-27166561

ABSTRACT

Classical swine fever (CSF) is a highly contagious and lethal disease in swine. Serological tests for the diagnosis of CSF need not only to detect antibodies against CSFV, but also need to differentiate these from antibodies against other pestiviruses. To investigate the possibilities of specific peptide-based serology, various synthetic peptides that represent a well-described linear epitope of the CSFV E2 protein (TAVSPTTLR) were used to test the viability of a peptide-based suspension array for the detection of antibodies against pestiviruses in swine. The results show that N-terminally biotinylated peptides can bind to avidin conjugated beads, and function in detection of the corresponding monoclonal antibody WH303. There are indications that the length of the spacer between epitope and biotin affect the efficiency of the peptide-antibody interaction. A protocol was established that enables probing for antibodies in porcine sera, where neutravidin-blocking of serum and the use of empty control beads for normalization was crucial. With a set of porcine sera with antibodies against various pestiviruses, the proof of concept of a peptide-based suspension array for specific detection of antibodies against pestiviruses in porcine sera was demonstrated.


Subject(s)
Antibodies, Viral/blood , Peptides/immunology , Pestivirus Infections/diagnosis , Pestivirus/immunology , Protein Array Analysis/methods , Animals , Antibodies, Monoclonal/immunology , Epitopes/immunology , Pestivirus Infections/immunology , Pestivirus Infections/virology , Swine , Viral Envelope Proteins/immunology
7.
Int J Food Microbiol ; 148(2): 128-34, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21632134

ABSTRACT

Due to possible presence and spread of contagious animal viruses via natural sausage casings the international trade in these food products is subject to veterinary and public health requirements. In order to manage these restrictions we determined the effect of casing preservation on four highly contagious viruses for livestock: foot-and-mouth-disease virus (FMDV), classical swine fever virus (CSFV), swine vesicular disease virus (SVDV) and African swine fever virus (ASFV). We used an in vitro 3D collagen matrix model in which cells, infected with the four different viruses were embedded in a bovine collagen type I gel matrix and treated with either saturated salt (NaCl) or phosphate supplemented saturated salt at four different temperatures (4, 12, 20 and 25 °C) during a period of 30 days. The results showed that all viruses were faster inactivated at higher temperatures, but that stability of the various viruses at 4 °C differed. Inactivation of FMDV in the 3D collagen matrix model showed a clear temperature and treatment effect on the reduction of FMDV titres. At 4 and 12 °C phosphate supplemented salt showed a very strong FMDV inactivation during the first hour of incubation. Salt (NaCl) only had a minor effect on FMDV inactivation. Phosphate supplemented salt treatment increased the effect temperature had on inactivation of CSFV. In contrast, the salt (NaCl) treatment only increased CSFV inactivation at the higher temperatures (20 °C and 25 °C). Also SVDV inactivation was increased by phosphate supplemented salt, but salt (NaCl) treatment only resulted in a significant decrease of SVDV titre at a few time points. The ASFV results showed that both salt (NaCl) and phosphate supplemented salt were capable to inactivate ASFV within 48 h. In contrast to the other viruses (FMDV, CSFV and SVDV), ASFV was the most stable virus even at higher temperatures. The results obtained in this in vitro model underline the efficacy of a combined treatment using phosphate supplemented salt and storage at 20 °C or higher for a period of 30 days. This treatment may therefore be useful in reducing the animal health risks posed by spread of contagious animal viruses by international trade of natural sausage casings.


Subject(s)
Meat Products/virology , Phosphates/pharmacology , Sodium Chloride/pharmacology , Virus Inactivation , African Swine Fever Virus/drug effects , Animals , Cattle , Cell Line , Classical Swine Fever Virus/drug effects , Collagen , Enterovirus B, Human/drug effects , Food Contamination/prevention & control , Food Microbiology , Foot-and-Mouth Disease Virus/drug effects , Swine , Temperature
8.
Transfusion ; 45(5): 667-79, 2005 May.
Article in English | MEDLINE | ID: mdl-15847653

ABSTRACT

BACKGROUND: In the Netherlands, 500,000 blood donors are active. Blood of all donors is currently typed serologically for ABO, the Rh phenotype, and K. Only a subset of donors is typed twice for a larger set of red cell (RBC) and/or platelet (PLT) antigens. To increase the direct availability of typed RBCs and PLTs, a high-throughput technique is being developed to genotype the whole donor cohort for all clinically relevant RBC and PLT antigens. STUDY DESIGN AND METHODS: A multiplex polymerase chain reaction was developed to both amplify and fluorescently label 19 gene fragments of RBC and PLT antigens in one reaction. To test the setup of the genotyping method by microarray, a pilot study with human PLT antigen (HPA)-typed donor samples was performed. On each slide, 12 arrays are present containing 20 probes per PLT antigen system (28 for HPA-3). The allele-specific oligohybridization method was used to discriminate between two different alleles. RESULTS: Two blinded panels encompassing 94 donors were genotyped for HPA-1 through -5 and -15; no discrepancies were found compared to their serologic typing (HPA-1, -2, -3, -4, and -5) and genotyping (HPA-15; TaqMan, Applied Biosystems). CONCLUSION: This study shows that the HPA microarray provides a reliable and fast genotyping procedure. With further development an automated throughput for complete typing of large donor cohorts can be obtained.


Subject(s)
Blood Group Antigens/genetics , Blood Grouping and Crossmatching/methods , Oligonucleotide Array Sequence Analysis/methods , Polymerase Chain Reaction/methods , Antigens, Human Platelet/genetics , Blood Banking/methods , Erythrocytes , Genotype , Humans , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis/standards , Polymerase Chain Reaction/standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...