Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 13(39): 4674-4682, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34549730

ABSTRACT

The development of an accurate, sensitive and selective sensor for the detection of bisphenol A (BPA) based on the incorporation of a new phthalocyanine derivative, cobalt phthalocyanine, C,C,C,C-tetracarboxylic acid-polyacrylamide (CoPc-PAA) into a carbon-paste matrix is presented using voltammetry and constant potential techniques. The influence of measuring parameters such as pH and scan rate on the analytical performance of the sensor was evaluated. Several kinetic parameters such as electron transfer number (n), charge transfer coefficient (α), electrode surface area (A) and diffusion coefficient (D) were also calculated. Under optimum conditions, particularly at pH 7.2, the BPA sensor resulted in a wide linear range from 25 × 10-11 M to 2.5 × 10-7 M and a limit of detection as low as 63.5 pM. Based on these findings, it can be concluded that our sensor can be substantially utilized for detecting BPA in spiked milk samples.


Subject(s)
Carbon , Electrochemical Techniques , Benzhydryl Compounds , Electrodes , Indoles , Limit of Detection , Organometallic Compounds , Phenols
2.
Talanta ; 216: 120924, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32456933

ABSTRACT

Bisphenol A is one the most relevant endocrine disruptors for its toxicity and ubiquity in the environment, being largely employed as raw material for manufacturing processes of a wide number of compounds. Furthermore, bisphenol A is released in the drinking water when plastic-based bottles are incorrectly transported under sunlight, delivering contaminated drinking water. For the health of human beings and the environment, rapid and on site detection of bisphenol A in drinking water is an important issue. Herein, we report a novel and cost-effective printed electrochemical sensor for an enzymatic-free bisphenol A detection. This sensor encompasses the entire electrochemical cell printed on filter paper and the reagents for the measurement loaded in the cellulose fiber network, for delivering a reagent-free analytical tool. The working electrode was printed using ink modified with carbon black, a cost effective nanomaterial for sensitive and sustainable bisphenol A determination. Several parameters including pH, frequency, and amplitude were optimized allowing for a detection limit of 0.03 µM with two linear ranges 0.1-0.9 µM and 1 µM-50 µM, using square wave voltammetry as electrochemical technique. The satisfactory recovery values found in river and drinking water samples demonstrated the suitability of this sensor for screening analyses in water samples. These results revealed the attractiveness of this paper-based device thanks to the synergic combination of paper and carbon black as cost-effective materials.

3.
RSC Adv ; 10(53): 31740-31747, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-35518173

ABSTRACT

In this study, the (5,10,15,20-tetrakis[(4-methoxyphenyl)]porphyrinato)cadmium(ii) complex ([Cd(TMPP)]) was successfully used as a modifier in a carbon paste electrode (CPE) and exploited for bisphenol A (BPA) detection. Analytical performance revealed two linear ranges from 0.0015-15 µM and 0.015-1.5 mM with a detection limit of 13.5 pM. The proposed method was implemented in water samples, which resulted in quantitative signals over the range 6.5-1000 µM with recoveries between 92.6 and 107.7% for tap water and between 96.6 to 106.0% for mineral water.

SELECTION OF CITATIONS
SEARCH DETAIL
...