Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Biomed Microdevices ; 26(1): 7, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175269

ABSTRACT

An investigation was conducted to examine the effect of magnetic bead (MB) size on the effectiveness of isolating lung cancer cells using the immunomagnetic separation (IMS) method in a serpentine microchannel with added cavities (SMAC) structure. Carboxylated magnetic beads were specifically conjugated to target cells through a modification procedure using aptamer materials. Cells immobilized with different sizes (in micrometers) of MBs were captured and isolated in the proposed device for comparison and analysis. The study yields significance regarding the clarification of device working principles by using a computational model. Furthermore, an accurate evaluation of the MB size impact on capture efficiency was achieved, including the issue of MB-cell accumulation at the inlet-channel interface, despite it being overlooked in many previous studies. As a result, our findings demonstrated an increasing trend in binding efficiency as the MB size decreased, evidenced by coverages of 50.5%, 60.1%, and 73.4% for sizes of 1.36 µm, 3.00 µm, and 4.50 µm, respectively. Additionally, the overall capture efficiency (without considering the inlet accumulation) was also higher for smaller MBs. However, when accounting for the actual number of cells entering the channel (i.e., the effective capture), larger MBs showed higher capture efficiency. The highest effective capture achieved was 88.4% for the size of 4.50 µm. This research provides an extensive insight into the impact of MB size on the performance of IMS-based devices and holds promise for the efficient separation of circulating cancer cells (CTCs) in practical applications.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Immunomagnetic Separation , Carboxylic Acids , Magnetic Phenomena
2.
Electrophoresis ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175846

ABSTRACT

Metastasis remains a significant cause to cancer-related mortality, underscoring the critical need for early detection and analysis of circulating tumor cells (CTCs). This study presents a novel microfluidic chip designed to efficiently capture A549 lung cancer cells by combining dielectrophoresis (DEP) and aptamer-based binding, thereby enhancing capture efficiency and specificity. The microchip features interdigitated electrodes made of indium-tin-oxide that generate a nonuniform electric field to manipulate CTCs. Following three chip design, scenarios were investigated: (A) bare glass surface, (B) glass modified with gold nanoparticles (AuNPs) only, and (C) glass modified with both AuNPs and aptamers. Experimental results demonstrate that AuNPs significantly enhance capture efficiency under DEP, with scenarios (B) and (C) exhibiting similar performance. Notably, scenario (C) stands out as aptamer-functionalized surfaces resisting fluid shear forces, achieving CTCs retention even after electric field deactivation. Additionally, an innovative reverse pumping method mitigates inlet clogging, enhancing experimental efficiency. This research offers valuable insights into optimizing surface modifications and understanding key factors influencing cell capture, contributing to the development of efficient cell manipulation techniques with potential applications in cancer research and personalized treatment options.

3.
Diagnostics (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37174954

ABSTRACT

Cancer is a dangerous and sometimes life-threatening disease that can have several negative consequences for the body, is a leading cause of mortality, and is becoming increasingly difficult to detect. Each form of cancer has its own set of traits, symptoms, and therapies, and early identification and management are important for a positive prognosis. Doctors utilize a variety of approaches to detect cancer, depending on the kind and location of the tumor. Imaging tests such as X-rays, Computed Tomography scans, Magnetic Resonance Imaging scans, and Positron Emission Tomography (PET) scans, which may provide precise pictures of the body's interior structures to spot any abnormalities, are some of the tools that doctors use to diagnose cancer. This article evaluates computational-intelligence approaches and provides a means to impact future work by focusing on the relevance of machine learning and deep learning models such as K Nearest Neighbour (KNN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Deep Neural Network, Deep Boltzmann machine, and so on. It evaluates information from 114 studies using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). This article explores the advantages and disadvantages of each model and provides an outline of how they are used in cancer diagnosis. In conclusion, artificial intelligence shows significant potential to enhance cancer imaging and diagnosis, despite the fact that there are a number of clinical issues that need to be addressed.

4.
Electrophoresis ; 44(11-12): 1002-1015, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36896498

ABSTRACT

In this paper, a microfluidic chip for the manipulation and capture of cancer cells was introduced, in which the combination of dielectrophoresis (DEP) and a binding method based on chemical interactions by using cell-specific aptamers was performed to enhance the capture strength and specificity. The device has been simply constructed from a straight-channel PDMS placed on a glass substrate that has patterned electrode structures and a self-assembled monolayer of gold nanoparticles (AuNPs). The target cells were transported to the manipulation area by flow and attracted down to the region between the electrodes under the influence of positive DEP force. This approach facilitated subsequent selective capture by the modified aptamers on the AuNPs. The distribution of the electric field in the channel has also been simulated to clarify the DEP operation. As a result, the device has been shown to effectively capture target lung cancer cells with a concentration as low as 2 × 10 4 $2\ \ensuremath{\times{}}\ {10}^{4}\ $ cells/mL. The capture specificity in a sample of mixed cells is up to 80.4%. This technique has the potential to be applied to detection methods for many types of cancer.


Subject(s)
Metal Nanoparticles , Microfluidic Analytical Techniques , Neoplasms , Humans , Microfluidics/methods , Gold/chemistry , Electrodes , Oligonucleotides , Electrophoresis/methods
5.
Materials (Basel) ; 16(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36769899

ABSTRACT

Scientists are drawn to the new green composites because they may demonstrate qualities that are comparable to those of composites made of synthetic fibers due to concerns about environmental contamination. In this work, the potential for using the produced green composite in different buckling load-bearing structural applications is explored. The work on composite buckling characteristics is vital because one needs to know the composite's structural stability since buckling leads to structural instability. The buckling properties of composite specimens with epoxy as the matrix and chemically treated cellulose microfibrils as reinforcements are examined numerically in this study when exposed to axial compressive stress. The numerical model is first created based on the finite element method model. Its validity is checked using ANSYS software by contrasting the critical buckling loads determined through research for three samples. The numerical findings acquired using the finite element method are then contrasted with those produced using the regression equation derived from the ANOVA. The utilization of the created green composite in different buckling load-bearing structural applications is investigated in this study. As a result of the green composite's unaltered buckling properties compared to synthetic composites, it has the potential to replace numerous synthetic composites, improving environmental sustainability.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35808014

ABSTRACT

This review paper gives an insight into the microstructural, mechanical, biological, and corrosion resistance of spark plasma sintered magnesium (Mg) composites. Mg has a mechanical property similar to natural human bones as well as biodegradable and biocompatible properties. Furthermore, Mg is considered a potential material for structural and biomedical applications. However, its high affinity toward oxygen leads to oxidation of the material. Various researchers optimize the material composition, processing techniques, and surface modifications to overcome this issue. In this review, effort has been made to explore the role of process techniques, especially applying a typical powder metallurgy process and the sintering technique called spark plasma sintering (SPS) in the processing of Mg composites. The effect of reinforcement material on Mg composites is illustrated well. The reinforcement's homogeneity, size, and shape affect the mechanical properties of Mg composites. The evidence shows that Mg composites exhibit better corrosion resistance, as the reinforcement act as a cathode in a Mg matrix. However, in most cases, a localized corrosion phenomenon is observed. The Mg composite's high corrosion rate has adversely affected cell viability and promotes cytotoxicity. The reinforcement of bioactive material to the Mg matrix is a potential method to enhance the corrosion resistance and biocompatibility of the materials. However, the impact of SPS process parameters on the final quality of the Mg composite needs to be explored.

7.
Biomed Microdevices ; 24(2): 19, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35666324

ABSTRACT

In this study, we developed a microfluidic device for a dual work of protein preconcentration and subsequent capture by an immunoassay system. The fabrication of nano-interstices (nanochannels) to generate ion concentration polarization effect (ICP) for the preconcentration was simply performed by exploiting the loose association of glass-on-modified AuNPs to the polydimethylsiloxane (PDMS) channel pads as well as spaces between the substrate and the PDMS pad caused by these AuNPs. As a result, 65-fold concentration enhancement was achieved when performed on a sample of fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA). Furthermore, a modification procedure of antibodies responsible for capturing target proteins was performed on gold electrodes integrated into the proposed chip. After preconcentration, the immunoassay system was worked, and showed a good performance in capturing targets. Through this study, we demonstrated that the device can work efficiently for the dual purpose, has the potential to apply widely for the analysis and capture of various targets.


Subject(s)
Metal Nanoparticles , Microfluidic Analytical Techniques , Gold , Immunoassay , Lab-On-A-Chip Devices
8.
Nanomaterials (Basel) ; 12(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35159730

ABSTRACT

The most well-known and widely used non-traditional manufacturing method is electrical discharge machining (EDM). It is well-known for its ability to cut rigid materials and high-temperature alloys that are difficult to machine with traditional methods. The significant challenges encountered in EDM are high tool wear rate, low material removal rate, and high surface roughness caused by the continuous electric spark generated between the tool and the workpiece. Researchers have reported using a variety of approaches to overcome this challenge, such as combining the die-sinking EDM process with cryogenic treatment, cryogenic cooling, powder-mixed processing, ultrasonic assistance, and other methods. This paper examines the results of these association techniques on various performance measures, such as material removal rate (MRR), tool wear rate (TWR), surface roughness, surface integrity, and recast layer formed during machining, and identifies potential gap areas and proposes a solution. The manuscript is useful for improving performance and introducing new resolutions to the field of EDM machining.

9.
Materials (Basel) ; 14(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34640165

ABSTRACT

The effect of adding molybdenum to the heavy tungsten alloy of W-Ni-Fe on its material characteristics was examined in the current study. The elemental powders of tungsten, iron, nickel, and molybdenum, with a composition analogous to W-3Fe-7Ni-xMo (x = 0, 22.5, 45, 67.5 wt.%), were fabricated using the spark plasma sintering (SPS) technique at a sintering temperature of 1400 °C and under pressure of 50 MPa. The sintered samples were subjected to microstructural characterization and tested for mechanical strength. The smallest grain size of 9.99 microns was observed for the 45W-45Mo alloy. This alloy also gave the highest tensile and yield strengths of 1140 MPa and 763 MPa, respectively. The hardness increased with the increased addition of molybdenum. The high level of hardness was observed for 67.5Mo with a 10.8% increase in the base alloy's hardness. The investigation resulted in the alloy of 45W-7Ni-3Fe-45Mo, observed to provide optimum mechanical properties among all the analyzed samples.

10.
Biomed Microdevices ; 23(4): 51, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34596785

ABSTRACT

The manipulation and separation of circulating tumor cells (CTCs) in continuous fluidic flows play an essential role in various biomedical applications, particularly the early diagnosis and treatment of diseases. Recent advances in magnetic bead development have provided promising solutions to the challenges encountered in CTC manipulation and isolation. In this study, we proposed a biomicrofluidic platform for specifically isolating human lung carcinoma A549 cells in microfluidic channels. The principle of separation was based on the effect of the magnetic field on aptamer-conjugated magnetic beads, also known as immunomagnetic beads, in a serpentine microchannel with added cavities (SMAC). The magnetic cell separation performance of the proposed structure was modeled and simulated by using COMSOL Multiphysics. The experimental procedures for aptamer molecular conjugation on 1.36 µm-diameter magnetic beads and magnetic bead immobilization on A549 cells were also reported. The lung carcinoma cell-bead complexes were then experimentally separated by an external magnetic field. Separation performance was also confirmed by optical microscopic observations and fluorescence analysis, which showed the high selectivity and efficiency of the proposed system in the isolation and capture of A549 cells in our proposed SMAC. At the flow rate of 5 µL/s, the capture rate of human lung carcinoma cells exceeded 70% in less than 15 min, whereas that of the nontarget cells was approximately 4%. The proposed platform demonstrated its potential for high selectivity, portability, and facile operation, which are suitable considerations for developing point-of-care applications for various biological and clinical purposes.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplastic Cells, Circulating , Cell Line, Tumor , Cell Separation , Humans , Immunomagnetic Separation
11.
Nanomaterials (Basel) ; 11(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34578547

ABSTRACT

There is a massive demand for low-weight high strength materials in automotive, space aerospace, and even structural industries in this present engineering world. These industries attract composites only because of their high strength, resistance to wear, and low weight. Among these composites, metal matrix composite finds wide applications due to its elevated properties, excellent resistance property, corrosion resistance, etc. The reinforcements exist in particles, fiber, and whiskers. Among the three, particles play an important role because of their availability and wettability with the metal matrix. Additionally, among the various metal matrices such as aluminum, magnesium, copper, titanium, etc., aluminum plays a vital role among metal matrices because of its cost, availability in abundance, and castability. Stir casting is the most inexpensive and straightforward composite fabrication technique among the prevailing techniques. Even though so many factors contribute to the elevated property of composites, metal matrix, and reinforcement phase, uniform distribution and wettability are essential factors among all the other factors. This review aims to develop a composite with elevated property in a cost-effective manner. Cost includes metal matrix, reinforcement, and processing technique. Various works have been tabulated to achieve the above objective, and analysis was carried out on tensile strength concerning microstructure. This review paper explores the challenges in composite fabrication and finds a solution to overcome them.

12.
Molecules ; 26(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068199

ABSTRACT

The effect of molybdenum additions on the phases, microstructures, and mechanical properties of pre-alloyed Ti6Al4V was studied through the spark plasma sintering technique. Ti6Al4V-xMo (where x = 0, 2, 4, 6 wt.% of Mo) alloys were developed, and the sintered compacts were characterized in terms of their phase composition, microstructure, and mechanical properties. The results show that the equiaxed primary alpha and Widmänstatten (alpha + beta) microstructure in pre-alloyed Ti6Al4V is transformed into a duplex and globular model with the increasing content of Mo from 0 to 6%. The changing pattern of the microstructure of the sample strongly influences the properties of the material. The solid solution hardening element such as Mo enhances mechanical properties such as yield strength, ultimate tensile strength, ductility, and hardness compared with the pre-alloyed Ti6Al4V alloy.

13.
Polymers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805018

ABSTRACT

The evolution of a sustainable green composite in various loadbearing structural applications tends to reduce pollution, which in turn enhances environmental sustainability. This work is an attempt to promote a sustainable green composite in buckling loadbearing structural applications. In order to use the green composite in various structural applications, the knowledge on its structural stability is a must. As the structural instability leads to the buckling of the composite structure when it is under an axial compressive load, the work on its buckling characteristics is important. In this work, the buckling characteristics of a woven flax/bio epoxy (WFBE) laminated composite plate are investigated experimentally and numerically when subjected to an axial compressive load. In order to accomplish the optimization study on the buckling characteristics of the composite plate among various structural criterions such as number of layers, the width of the plate and the ply orientation, the optimization tool "response surface methodology" (RSM) is used in this work. The validation of the developed finite element model in Analysis System (ANSYS) version 16 is carried out by comparing the critical buckling loads obtained from the experimental test and numerical simulation for three out of twenty samples. A comparison is then made between the numerical results obtained through ANSYS16 and the results generated using the regression equation. It is concluded that the buckling strength of the composite escalates with the number of layers, the change in width and the ply orientation. It is also noted that the weaving model of the fabric powers the buckling behavior of the composite. This work explores the feasibility of the use of the developed green composite in various buckling loadbearing structural applications. Due to the compromised buckling characteristics of the green composite with the synthetic composite, it has the capability of replacing many synthetic composites, which in turn enhances the sustainability of the environment.

14.
Materials (Basel) ; 14(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800669

ABSTRACT

Tungsten heavy alloys are two-phase metal matrix composites that include W-Ni-Fe and W-Ni-Cu. The significant feature of these alloys is their ability to acquire both strength and ductility. In order to improve the mechanical properties of the basic alloy and to limit or avoid the need for post-processing techniques, other elements are doped with the alloy and performance studies are carried out. This work focuses on the developments through the years in improving the performance of the classical tungsten heavy alloy of W-Ni-Fe through doping of other elements. The influence of the percentage addition of rare earth elements of yttrium, lanthanum, and their oxides and refractory metals such as rhenium, tantalum, and molybdenum on the mechanical properties of the heavy alloy is critically analyzed. Based on the microstructural and property evaluation, the effects of adding the elements at various proportions are discussed. The addition of molybdenum and rhenium to the heavy alloy gives good strength and ductility. The oxides of yttrium, when added in a small quantity, help to reduce the tungsten's grain size and obtain good tensile and compressive strengths at high temperatures.

15.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562766

ABSTRACT

In the present work, nano Cu (0, 5, 10, 15, 20, 25 wt.%) was added to W, and W-Cu composites were fabricated using the spark plasma sintering (S.P.S.) technique. The densification, microstructural evolution, tensile strength, micro-hardness, and electrical conductivity of the W-Cu composite samples were evaluated. It was observed that increasing the copper content resulted in increasing the relative sintered density, with the highest being 82.26% in the W75% + Cu25% composite. The XRD phase analysis indicated that there was no evidence of intermetallic phases. The highest ultimate (tensile) strength, micro-hardness, and electrical conductivity obtained was 415 MPa, 341.44 HV0.1, and 28.2% IACS, respectively, for a sample containing 25 wt.% nano-copper. Fractography of the tensile tested samples revealed a mixed-mode of fracture. As anticipated, increasing the nano-copper content in the samples resulted in increased electrical conductivity.

16.
Materials (Basel) ; 14(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430402

ABSTRACT

The traditional solid-state reaction method was employed to synthesize bulk calcium cobaltite (Ca349/Ca3Co4O9) ceramics via ball milling the precursor mixture. The samples were compacted using conventional sintering (CS) and spark plasma sintering (SPS) at 850, 900, and 950 °C. The X-ray diffraction (XRD) pattern indicates the presence of the Ca349 phase for samples sintered at 850 and 900 °C. In addition, SPS fosters higher densification (81.18%) than conventional sintering (50.76%) at elevated sintering temperatures. The thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) performed on the precursor mixture reported a weight loss of ~25.23% at a temperature range of 600-820 °C. This current work aims to analyze the electrical properties (Seebeck coefficient (s), electrical resistivity (ρ), and power factor) of sintered samples as a function of temperature (35-500 °C). It demonstrates that the change in sintering temperature (conventional sintering) did not evince any significant change in the Seebeck coefficient (113-142 µV/K). However, it reported a low resistivity of 153-132 µΩ-m and a better power factor (82-146.4 µW/mK2) at 900 °C. On the contrary, the SPS sintered samples recorded a higher Seebeck coefficient of 121-181 µV/K at 900 °C. Correspondingly, the samples sintered at 950 °C delineated a low resistivity of 145-158 µΩ-m and a better power factor (97-152 µW/mK2).

17.
Polymers (Basel) ; 13(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430088

ABSTRACT

Due to the growing environmental awareness, the development of sustainable green composites is in high demand in composite industries, mainly in the automotive, aircraft, construction and marine applications. This work was an attempt to experimentally and numerically investigate the dynamic characteristics of Woven Flax/Bio epoxy laminated composite plates. In addition, the optimisation study on the dynamic behaviours of the Woven Flax/Bio epoxy composite plate is carried out using the response surface methodology (RSM) by consideration of the various parameters like ply orientation, boundary condition and aspect ratio. The elastic constants of the Woven Flax/Bio epoxy composite lamina needed for the numerical simulation are determined experimentally using two methods, i.e., the usual mechanical tests as well as through the impulse excitation of vibration-based approach and made a comparison between them. The numerical analysis on the free vibration characteristics of the composite was carried out using ANSYS, a finite element analysis (FEA) software. The confirmation of the FE model was accomplished by comparing the numerical results with its experimental counterpart. Finally, a comparison was made between the results obtained through the regression equation and finite element analysis.

18.
Biosensors (Basel) ; 11(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467122

ABSTRACT

In this paper, we developed an isolation system for A549 human lung carcinoma cells as an effective factor for the early diagnosis of lung cancer. A microfluidic immunomagnetic method was used, in which the combination of immunomagnetic separation and a microfluidic system allowed for increased isolation efficiency with uncomplicated manipulation. In the microfluidic immunomagnetic strategy, A549 cells were combined with aptamer-conjugated carboxylated magnetic beads and then collected in a specified region by applying a magnetic field. The results were recorded using a fluorescence microscope, and the captured targets were then quantified. The isolation efficiency of A549 cells is up to 77.8%. This paper developed a simple working procedure, which is less time consuming, high-throughput, and trustworthy for the isolation of A549 cells. This procedure can be a useful reference method for the development of an effective diagnosis and treatment method for lung cancer in the future.


Subject(s)
Aptamers, Nucleotide/chemistry , Immunomagnetic Separation/methods , Lung Neoplasms/diagnosis , Microfluidic Analytical Techniques/methods , A549 Cells , Cell Separation , Early Detection of Cancer , High-Throughput Screening Assays , Humans , Microscopy, Fluorescence
19.
IEEE Trans Biomed Circuits Syst ; 14(6): 1371-1380, 2020 12.
Article in English | MEDLINE | ID: mdl-33085615

ABSTRACT

Detection and counting of biological living cells in continuous fluidic flows play an essential role in many applications for early diagnosis and treatment of diseases. In this regard, this study highlighted the proposal of a biochip system for detecting and enumerating human lung carcinoma cell flow in the microfluidic channel. The principle of detection was based on the change of impedance between sensing electrodes integrated in the fluidic channel, due to the presence of a biological cell in the sensing region. A compact electronic module was built to sense the unbalanced impedance between the sensing microelectrodes. It consisted of an instrumentation amplifier stage to obtain the difference between the acquired signals, and a lock-in amplifier stage to demodulate the signals at the stimulating frequency as well as to reject noise at other frequencies. The performance of the proposed system was validated through experiments of A549 cells detection as they passed over the microfluidic channel. The experimental results indicated the occurrence of large spikes (up to approximately 180 mV) over the background signal according to the passage of a single A549 cell in the continuous flow. The proposed device is simple-to-operate, inexpensive, portable, and exhibits high sensitivity, which are suitable considerations for developing point-of-care applications.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Single-Cell Analysis/instrumentation , A549 Cells , Electric Impedance , Equipment Design , Humans , Single-Cell Analysis/methods
20.
Sensors (Basel) ; 20(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357418

ABSTRACT

A highly sensitive photoelectrochemical (PEC) biosensor without external bias was developed in this study. The biosensor was configured with a p-Cu2O and n-ZnO heterostructure. Hexamethylenetetramine (HMTA) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was used to improve the crystal structure of Cu2O and ZnO and reduce the defects in the Cu2O/ZnO interface. This fabrication method provided the highly crystallized Cu2O/ZnO structure with excellent electrical property and photoresponse in visible light. The structure was applied to a biosensor for detecting two different cancerous levels of esophageal cells, namely, OE21 and OE21-1, with a high gain in photocurrent (5.8 and 6.2 times, respectively) and a low detection limit (3000 cells in 50 µL). We believe that such a p-n heterojunction PEC biosensor could advance biosensor development and provide a promising candidate for biomedical applications.


Subject(s)
Biosensing Techniques , Esophageal Neoplasms/diagnosis , Nanocomposites/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Copper/chemistry , Humans , Polymers/chemistry , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...