Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(22): 19807-19815, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37305259

ABSTRACT

Aerosols play an important role in climate and air quality; however, the mechanisms behind aerosol particle formation in the atmosphere are poorly understood. Studies have identified sulfuric acid, water, oxidized organics, and ammonia/amines as key precursors for forming aerosol particles in the atmosphere. Theoretical and experimental investigations have indicated that other species, such as organic acids, may be involved in atmospheric nucleation and growth of freshly formed aerosol particles. Organic acids, such as dicarboxylic acids, which are abundant in the atmosphere, have been measured in ultrafine aerosol particles. These observations suggest that organic acids may contribute to new particle formation in the atmosphere but their role remains ambiguous. This study examines how malonic acid interacts with sulfuric acid and dimethylamine to form new particles at warm boundary layer conditions using experimental observations from a laminar flow reactor and quantum chemical calculations coupled with cluster dynamics simulations. Observations reveal that malonic acid does not contribute to the initial steps (formation of <1 nm diameter particle) of nucleation with sulfuric acid-dimethylamine. In addition, malonic acid was found to not participate in the subsequent growth of the freshly nucleated 1 nm particles from sulfuric acid-dimethylamine reactions to diameters of 2 nm.

2.
ACS Earth Space Chem ; 7(3): 653-660, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36960424

ABSTRACT

Aerosol nucleation accounts for over half of all seed particles for cloud droplet formation. In the atmosphere, sulfuric acid (SA) nucleates with ammonia, amines, oxidized organics, and many more compounds to form particles. Studies have also shown that methanesulfonic acid (MSA) nucleates independently with amines and ammonia. MSA and SA are produced simultaneously via dimethyl sulfide oxidation in the marine atmosphere. However, limited knowledge exists on how MSA and SA nucleate together in the presence of various atmospherically relevant base compounds, which is critical to predicting marine nucleation rates accurately. This work provides experimental evidence that SA and MSA react to form particles with amines and that the SA-MSA-base nucleation has different reaction pathways than SA-base nucleation. Specifically, the formation of the SA-MSA heterodimer creates more energetically favorable pathways for SA-MSA-methylamine nucleation and an enhancement of nucleation rates. However, SA-trimethylamine nucleation is suppressed by MSA, likely due to the steric hindrance of the MSA and trimethylamine. These results display the importance of including nucleation reactions between SA, MSA, and various amines to predict particle nucleation rates in the marine atmosphere.

3.
J Phys Chem A ; 126(44): 8240-8248, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36287779

ABSTRACT

Atmospheric nucleation from precursor gases is a significant source of cloud condensation nuclei in the troposphere and thus can affect the Earth's radiative balance. Sulfuric acid, ammonia, and amines have been identified as key nucleation precursors in the atmosphere. Studies have also shown that atmospheric ions can react with sulfuric acid to form stable clusters in a process referred to as ion-induced nucleation (IIN). IIN follows similar reaction pathways as chemical ionization, which is used to detect and measure nucleation precursors via atmospheric pressure chemical ionization mass spectrometers. The rate at which ions form clusters depends on the ion-molecule rate constant. However, the rate constant varies based on the ion composition, which is often not known in the atmosphere. Previous studies have examined ion-molecule rate constants for sulfuric acid and nitrate ions but not for other atmospherically relevant ions like acetate. We report the relative rate constants of ion-molecule reactions between nitrate and acetate ions reacting with sulfuric acid. The ion-molecule rate constant for acetate and sulfuric acid is estimated to be a factor of 1.9-2.4 times higher than that of the known rate constant for nitrate and sulfuric acid. Using quantum chemistry, we find that acetate has a higher dipole moment and polarizability than nitrate. This may contribute to an increase in the collision cross-sectional area between acetate and sulfuric acid and lead to a greater reaction rate constant than nitrate. The ion-molecule rate constant for acetate with sulfuric acid will help quantify the contribution of acetate ions to atmospheric ion-induced new particle formation.

4.
PLoS One ; 17(9): e0273194, 2022.
Article in English | MEDLINE | ID: mdl-36137079

ABSTRACT

Severe viral respiratory diseases, such as SARS-CoV-2, are transmitted through aerosol particles produced by coughing, talking, and breathing. Medical procedures including tracheal intubation, extubation, dental work, and any procedure involving close contact with a patient's airways can increase exposure to infectious aerosol particles. This presents a significant risk for viral exposure of nearby healthcare workers during and following patient care. Previous studies have examined the effectiveness of plastic enclosures for trapping aerosol particles and protecting health-care workers. However, many of these enclosures are expensive or are burdensome for healthcare workers to work with. In this study, a low-cost plastic enclosure was designed to reduce aerosol spread and viral transmission during medical procedures, while also alleviating issues found in the design and use of other medical enclosures to contain aerosols. This enclosure is fabricated from clear polycarbonate for maximum visibility. A large single-side cutout provides health care providers with ease of access to the patient with a separate cutout for equipment access. A survey of medical providers in a local hospital network demonstrated their approval of the enclosure's ease of use and design. The enclosure with appropriate plastic covers reduced total escaped particle number concentrations (diameter > 0.01 µm) by over 93% at 8 cm away from all openings. Concentration decay experiments indicated that the enclosure without active suction should be left on the patient for 15-20 minutes following a tracheal manipulation to allow sufficient time for >90% of aerosol particles to settle upon interior surfaces. This decreases to 5 minutes when 30 LPM suction is applied. This enclosure is an inexpensive, easily implemented additional layer of protection that can be used to help contain infectious or otherwise potentially hazardous aerosol particles while providing access into the enclosure.


Subject(s)
COVID-19 , Infectious Disease Transmission, Patient-to-Professional , Aerosolized Particles and Droplets , COVID-19/prevention & control , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Plastics , Respiratory Aerosols and Droplets , SARS-CoV-2
5.
J Phys Chem A ; 126(25): 4057-4067, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35729723

ABSTRACT

Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are extensively used for CO2 capture and consumer products. Despite their prevalence in industrial applications, the fate of alkanolamines in the atmosphere remains relatively unknown. One likely reaction pathway for these chemicals in the atmosphere is new particle formation with sulfuric acid. Here, we present the first experimental results showing the formation of sulfuric acid dimers enhanced by MEA, DEA, and TEA from the measurement of molecular clusters. This study examines the nucleation reactions of MEA, DEA, and TEA with sulfuric acid in a clean, laminar flow reactor. The chemical compositions and concentrations of the freshly nucleated clusters were analyzed using a custom-built atmospheric pressure chemical ionization long time-of-flight mass spectrometer known as the Pittsburgh Cluster CIMS. Quantum chemical calculations and kinetic modeling of sulfuric acid-MEA/DEA/TEA clusters were also performed to determine relative cluster stabilities between these sulfuric acid-base systems. Experimental results indicate that MEA, DEA, and TEA at the part per trillion by volume (pptv) concentrations can enhance sulfuric acid dimer formation rates but to a lesser extent than dimethylamine (DMA). Thus, MEA, DEA, and TEA will potentially play an important role in new particle formation in industrial cities where these alkanolamines are emitted.


Subject(s)
Ethanolamine , Sulfuric Acids , Atmosphere/chemistry , Ethanolamine/chemistry , Models, Theoretical , Sulfuric Acids/chemistry
6.
Environ Sci Technol ; 56(3): 1557-1567, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35037463

ABSTRACT

In the western United States, the number and severity of large wildfires have been growing for decades. Biomass burning (BB) is a major source of volatile organic compounds (VOCs) to the atmosphere both globally and regionally. Following emission, BB VOCs are oxidized while being transported downwind, producing ozone, secondary organic aerosols, and secondary hazardous VOCs. In this research, we measured VOCs using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) in an urban area 55-65 km downwind of the October 2017 Northern California wildfires. Nonaromatic oxygenated compounds were the dominant component of BB VOCs measured. In the smoke plumes, the VOCs account for 70-75% of the total observed organic carbon, with the remainder being particulate matter (with a diameter of <2.5 µm, PM2.5). We show that the correlation of VOCs with furan (primary BB VOC) and maleic anhydride (secondary BB VOC) can indicate the origin of the VOCs. This was further confirmed by the diurnal variations of the VOCs and their concentration-weighted trajectories. Oxidation during transport consumed highly reactive compounds including benzenoids, furanoids, and terpenoids and produced more oxygenated VOCs. Furthermore, wildfire VOCs altered the ozone formation regime and raised the O3 levels in the San Francisco Bay Area.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Wildfires , Air Pollutants/analysis , China , Environmental Monitoring/methods , Ozone/analysis , San Francisco
7.
Environ Sci Technol ; 53(16): 9418-9428, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31318536

ABSTRACT

Wildland fires in the western United States are projected to increase in frequency, duration, and size. Characterized by widespread and diverse conifer forests, burning within this region may lead to significant terpenoid emissions. Terpenoids constitute a major class of highly reactive secondary organic aerosol (SOA) precursors, with significant structure-dependent variability in reactivity and SOA-formation potential. In this study, highly speciated measurements of terpenoids emitted from laboratory and prescribed fires were achieved using two-dimensional gas chromatography. Nearly 100 terpenoids were measured in smoke samples from 71 fires, with high variability in the dominant compounds. Terpenoid emissions were dependent on plant species and tissues. Canopy/needle-derived emissions dominated in the laboratory fires, whereas woody-tissue-derived emissions dominated in the prescribed fires. Such differences likely have implications for terpenoid emissions from high vs low intensity fires and suggest that canopy-dominant laboratory fires may not accurately represent terpenoid emissions from prescribed fires or wildland fires that burn with low intensity. Predicted SOA formation was sensitive to the diversity of emitted terpenoids when compared to assuming a single terpene surrogate. Given the demonstrated linkages between fuel type, fire terpenoid emissions, and the subsequent implications for plume chemistry, speciated measurements of terpenoids in smoke derived from diverse ecosystems and fire regimes may improve air quality predictions downwind of wildland fires.


Subject(s)
Air Pollutants , Fires , Tracheophyta , Wildfires , Ecosystem , Forests , Terpenes
8.
J Phys Chem A ; 120(20): 3693-700, 2016 May 26.
Article in English | MEDLINE | ID: mdl-27128188

ABSTRACT

We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

9.
Faraday Discuss ; 165: 25-43, 2013.
Article in English | MEDLINE | ID: mdl-24600995

ABSTRACT

The chemical composition of 20 nm diameter particles was measured with the Nano Aerosol Mass Spectrometer (NAMS) in a rural/coastal environment during days when new particle formation (NPF) occurred and days when NPF did not occur. NAMS provides a quantitative measure of nanoparticle elemental composition with high time resolution. These measurements show that nanoparticle chemical composition is dynamic on both types of days and that changes in nanoparticle chemical composition do not necessarily correlate with changes in aerosol mass or number concentration. On NPF days, NAMS can distinguish between elements associated with particle formation and early mass growth from those associated with later mass growth. In the early stage of NPF, the particle phase sulphur mole fraction (S) increases simultaneously with the increase in gas phase sulphuric acid. This composition change occurs before the mode diameter has grown into the NAMS-measured size range and is quantitatively described by sulphuric acid condensation. The nitrogen mole fraction (N) also increases during this time period. The N/S mole ratio is approximately 2, indicating that particulate sulphate is fully neutralized. As the mode diameter passes into and through the NAMS-measured size range, N increases at a faster rate than S (N/S mole ratio increases above 2), indicating that a separate, nitrogen-based growth process exists, possibly involving aminium salts, inorganic nitrate and/or organonitrates. Carbonaceous matter is the most abundant component (-50% by mass) of the growing nanoparticles, but it is the inorganic species that are preferentially enhanced during NPF relative to other times of day. Concurrent measurements of cloud condensation nucleation activity during NPF events suggest that these newly formed particles are hygroscopic. Nanoparticle composition on non-NPF days also shifts toward a more inorganic composition during the daytime, but the chemical species are different from NPF days and the particles are less hygroscopic. Incorporation of S into growing nanoparticles is adequately explained by existing models, but currently no models exist to satisfactorily explain incorporation of nitrogen-containing species or carbonaceous matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...