Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 77(5): 829-39, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22169594

ABSTRACT

The aim of present investigation was isolation, characterization and differentiation into cardiomyocytes of putative goat embryonic stem cells produced from in vitro fertilized goat embryos. Goat blastocysts were produced in vitro by standard methods of in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC) techniques. The ICMs isolated from IVF blastocysts were cultured on 10 µl/ml mitomycin-C inactivated fetal fibroblast feeder layer with LIF. The putative ES colonies were characterized for extracellular markers like alkaline phosphatase, TRA-1-60, TRA-1-81, SSEA-1, SSEA-4 by immunocytochemistry and intracellular markers like Oct4, Sox2 and Nanog with reverse-transcription-PCR. The ES cells were successfully subcultured up to 22nd passage with feeder layer and LIF and up to 12th passage without feeder layer with LIF only. They exhibited normal karyotyping (20th passage) and maintained the expression of specific surface markers like alkaline phosphatase, SSEA-4, TRA-1-61, TRA-1-81 and intracellular markers Oct4, Sox2 and Nanog. The embryoid bodies (EBs) were generated from goat ES cells of 20th passage and were analyzed with markers like Gata4, BMP4 and Nestin. Differentiation was induced by medium containing 100 ng/ml Activin-A, 10 ng/ml FGF-2 and 100 ng/ml BMP-4. The embryoid bodies were analyzed with markers like Gata4, BMP4 and Nestin. The rhythmic beating of cardiomyocytes was observed after 30 d and the beating was still continuing even after 160 d of culturing. Similarly, 2nd and 3rd batches of EBs were also beating and the beating continues after 75 d and on. The beating cells were observed positive for cardiac specific markers like α Actinin, C-Troponin and α-Myosin heavy chain. Histological studies also revealed morphology similar to cardiomyocytes. Prominent contractions typical of cardiac tissue have been maintained in the differentiated cells up to 160 d and still continuing beating at the rate of 30 beats/min. It could be concluded that ES cells generated from goat embryos were maintained undifferentiated up to 22nd passage on feeder layer and to 12th passage without feed layer using LIF and that the differentiation protocol induced rhythmic beating cells.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Goats/embryology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Animals , Biomarkers/analysis , Blastocyst/physiology , Cell Differentiation , Cell Division , Embryo Culture Techniques/veterinary , Embryonic Stem Cells/chemistry , Fertilization in Vitro/veterinary , Immunohistochemistry , Karyotyping , Reverse Transcriptase Polymerase Chain Reaction
2.
Reprod Domest Anim ; 46(4): 699-704, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21134007

ABSTRACT

The present investigation was carried out to find an efficient chemically assisted procedure for enucleation of goat oocytes related to handmade cloning (HMC) technique. After 22-h in vitro maturation, oocytes were incubated with 0.5 µg/ml demecolcine for 2 h. Cumulus cells were removed by pipetting and vortexing in 0.5 mg/ml hyaluronidase, and zona pellucida were digested with pronase. Oocytes with extrusion cones were subjected to oriented bisection. One-third of the cytoplasm with the extrusion cone was removed with a micro blade. The remaining cytoplasts were used as recipients in HMC. Goat foetal fibroblasts were used as nuclear donors. The overall efficiency measured as the number of cytoplasts obtained per total number of oocytes used was significantly (p < 0.05) higher in chemically assisted handmade enucleation (CAHE) than oriented handmade enucleation without demecolcine (OHE) (80.02 ± 1.292% vs. 72.9 ± 1.00%, respectively, mean ± SEM). The reconstructed and activated embryos were cultured in embryo development medium (EDM) for 7 days. Fusion, cleavage and blastocyst development rate were 71.63 ± 1.95%, 92.94 ± 0.91% and 23.78 ± 3.33% (mean ± SEM), respectively which did not differ significantly from those achieved with random handmade enucleation and OHE. In conclusion, chemically assisted enucleation is a highly efficient and reliable enucleation method for goat HMC which eliminates the need of expensive equipment (inverted fluorescence microscope) and potentially harmful chromatin staining and ultraviolet (UV) irradiation for cytoplast selection.


Subject(s)
Cloning, Organism/veterinary , Demecolcine/pharmacology , Goats , Oocytes/cytology , Oocytes/physiology , Animals , Cell Nucleus/drug effects , Cloning, Organism/methods , Nuclear Transfer Techniques
3.
Indian J Pharm Sci ; 70(6): 795-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-21369445

ABSTRACT

In the present study aceclofenac-gelatin micropellets were prepared by the cross linking technique using gluteraldehyde as cross linking agent and characterized by X-ray diffractometry, differential scanning calorimetry and scanning electron microscopy. The effect of drug: polymer ratio, temperature of oil phase, amount of gluteraldehyde and stirring time was studied with respect to entrapment efficiency, micropellet size and drug release characteristics. Spherical micropellets having an entrapment efficiency of 57% to 97% were obtained. Differential scanning calorimetric analysis confirmed the absence of any drug-polymer interaction. The micromeritic studies of micropellets show improved flow property. The entrapment efficiency, micropellet size and drug release profile was altered significantly by changing various processing parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...