Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202400733, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758636

ABSTRACT

The Psoralen (Pso) molecule finds extensive applications in photo-chemotherapy, courtesy of its triplet state forming ability. Sulfur and selenium replacement of exocyclic carbonyl oxygen of organic chromophores foster efficient triplet harvesting with near unity triplet quantum yield. These triplet-forming photosensitizers are useful in Photodynamic Therapy (PDT) applications for selective apoptosis of cancer cells. In this work, we have critically assessed the effect of the sulfur and selenium substitution at the exocyclic carbonyl (TPso and SePso, respectively) and endocyclic oxygen positions of Psoralen. It resulted in a significant redshifted absorption spectrum to access the PDT therapeutic window with increased oscillator strength. The reduction in singlet-triplet energy gap and enhancement in the spin-orbit coupling values increase the number of intersystem crossing (ISC) pathways to the triplet manifold, which shortens the ISC lifetime from 10-5 s for Pso to 10-8 s for TPso and 10-9 s for SePso. The intramolecular photo-induced electron transfer process, a competitive pathway to ISC, is also considerably curbed by exocyclic functionalizations. In addition, a maximum of 115 GM of two-photon absorption (2PA) with IR absorption (660-1050 nm) confirms that the Psoralen skeleton can be effectively tweaked via single chalcogen atom replacement to design a suitable PDT photosensitizer.

2.
Chem Sci ; 14(48): 14200-14210, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38098725

ABSTRACT

Organoselenium compounds have recently been the experimentalists' delight due to their broad applications in organic synthesis, medicinal chemistry, and materials science. Selenium atom replacement of the carbonyl oxygen of the urea moiety dramatically reduces the HOMO-LUMO gap and oxidation potential, which completely changes the physicochemical properties of selenocarbonyl compounds. To our surprise, the photophysics and utility of a simple molecule such as selenourea (SeU) have not been explored in detail, which persuaded us to investigate its role in excited state processes. The steady-state emission, temperature-dependent time-correlated single photon counting, and femtosecond fluorescence upconversion experimental results confirmed that SeU significantly enhances the fluorescence quenching through a photoinduced electron transfer (PET) mechanism with an ∼10 ps ultrafast intrinsic PET lifetime component which is mostly absent in thiourea (TU). A wide range of fluorophores, based on their different redox abilities and fluorescence lifetimes covering a broad spectral window (λex: 390-590 nm and λem: 490-690 nm), were chosen to validate the proof of the concept. It was extended to tetramethylrhodamine (TMR)-5-maleimide labeled lysozyme protein, where we observed significant fluorescence quenching in the presence of SeU. The present work emphasizes that the high quenching efficiency with an ultrafast PET process, reduced orbital energy gap, and higher negative free energy change of the electron transfer reaction are the representative characteristics of selenourea or selenoamides to enable them as potential surrogates of thioamides or oxoamides quenching probes to monitor protein conformational changes and dynamics.

3.
Angew Chem Int Ed Engl ; 61(41): e202207521, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35983584

ABSTRACT

The deshielding or downfield 13 C NMR chemical shift of amide carbonyl carbon upon H-bonding is a widely observed phenomenon. This downfield shift is commonly used as a spectroscopic ruler for H-bonding. However, the very first observation of an upfield 13 C NMR of thiocarbonyl carbon in thioamides upon H-bonding encouraged us to explore the physical origin of the reversal of 13 C NMR chemical shielding. Careful NMR analysis shows that sulfur and selenium-centered H-bonds (S/SeCHBs) induce a shielding effect on the 13 CC=S(Se) while changing from amides to thioamides or selenoamides. In addition, natural chemical shielding (NCS) analysis shows that the σ11 and σ22 components of the isotropic shielding tensor (σ) have a crucial role in this unusual shielding.


Subject(s)
Selenium , Carbon , Hydrogen/chemistry , Hydrogen Bonding , Sulfur , Thioamides
4.
ACS Omega ; 7(32): 28138-28147, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990448

ABSTRACT

Metal complexes bearing nitrido ligands (M≡N) are at the forefront of current scientific research due to their resemblances with the metal complexes involved in the nitrogen fixation reactions. An oxo(corrolato)chromium(V) complex was used as a precursor complex for the facile synthesis of a new nitrido(corrolato)chromium(V) complex. The nitrido(corrolato)chromium(V) complex was characterized by various spectroscopic techniques. Density functional theory (DFT) calculations were performed on the nitrido(corrolato)chromium(V) complex to assign the vibrational and electronic transitions of this complex. The chromium-nitrogen (nitrido) bond distance obtained in the DFT-optimized structure is 1.530 Å and matches well with the earlier reported authentic Cr≡N bond distances obtained from the single-crystal X-ray diffraction data. This nitrido(corrolato)chromium(V) compound exhibited a sharp Soret band at 438 nm and a Q band at 608 nm. DFT calculations deliver that the origin of the bands at 438 and 608 nm is due to the intraligand charge transfer transitions. The nitrido(corrolato)chromium(V) complex showed one reversible oxidation and one reversible reduction couple at +0.53 and -0.06 V, respectively, vs the Ag/AgCl reference electrode. The simulation of the electron paramagnetic resonance data of the nitrido(corrolato)chromium(V) compound provided the following parameters: g iso = 1.987, A 53Cr = 26 G, and A 14N = 2.71 G. From all these analyses, we can conclude that the electronic configuration in the native state of nitrido(corrolato)chromium(V) can be best described as [(cor3-)CrV(N3-)]-. Reactions of nitrido(corrolato)chromium(V) with the chloro(porphyrinato)chromium(III) complex resulted in a complete intermetal N atom transfer reaction between chromium corrole and chromium porphyrin complexes. A second-order rate constant of 4.29 ± 0.10 M-1 s-1 was obtained for this reaction. It was also proposed that this reaction proceeds via a bimetallic µ-nitrido intermediate.

5.
J Phys Chem B ; 126(32): 6083-6094, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35938784

ABSTRACT

Finding appropriate photosensitizers (PSs) for daylight photodynamic therapy (dPDT) applications is extremely challenging, even though heavy-atom-free photosensitizers (HAFPSs) such as thiocarbonyl-modified nucleobases have shown a ray of hope. Few attempts have been made to find alternative natural products for dPDT applications. Pteridine heterocycles consisting of a pyrazine ring and a pyrimidine ring, such as lumazine, which exhibit many structural similarities to the alloxazine ring of the flavin molecule, could be an option for HAFPSs. The photophysical and quantum mechanical studies of the thio-modified lumazines revealed that sequential thiomodifications in lumazine result in a bathochromic shift. Additionally, higher tissue penetration depths were observed for thiolumazines. The fluorescence quenching in the case of thiomodified lumazines was explained using triplet state formation, whereas the contribution from the photoinduced electron transfer process cannot be ignored. It was also noticed that a strong one-photon absorption influenced the two-photon absorption (TPA) process, leading to a self-focusing effect in the visible spectral region. The higher tissue penetration and larger TPA cross section are the hallmark characteristics of the thiolumazines to be considered as potential HAFPSs for dPDT applications.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Electron Transport , Photons , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
6.
Phys Chem Chem Phys ; 24(28): 17185-17194, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35792115

ABSTRACT

Hydrogen bonding (H-bonding) with heavier chalcogens such as polonium and tellurium is almost unexplored owing to their lower electronegativities, providing us an opportunity to delve into the uncharted territory of X-H⋯Po/Te H-bonds (X-H, X = O, N, C). Employing high-level quantum mechanical calculations that include dispersion correction and the relativistic effect and considering dimethyl polonium (Me2Po) as the model H-bond donor, we have provided evidence of the X-H⋯Po H-bonds for the first time. The H-bond energies can be as much as 30 kJ mol-1, which is energetically comparable to any conventional H-bonds. It is counterintuitive from the perspective of low electronegativity of polonium but possible if one considers the contributions from polarizability, dispersion, and the relativistic effect. We strongly believe that these fundamental studies are expected to impact polonium chemistry, such as in marine science, as dimethyl polonium is one of the major chemicals produced by aerobic marine microorganisms and tracer applications of polonium for environmental carbon cycles.


Subject(s)
Polonium , Hydrogen Bonding
7.
Chem Soc Rev ; 51(11): 4261-4286, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35560317

ABSTRACT

Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.


Subject(s)
Chalcogens , Nucleic Acids , Halogens/chemistry , Hydrogen Bonding , Models, Molecular , Protein Structure, Secondary , Proteins/chemistry
8.
ACS Cent Sci ; 7(10): 1688-1697, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729412

ABSTRACT

Ribonucleic acid (RNA) is exceedingly sensitive to degradation compared to DNA. The current protocol for storage of purified RNA requires freezing conditions below -20 °C. Recent advancements in biological chemistry have identified amino acid-based ionic liquids as suitable preservation media for RNA, even in the presence of degrading enzymes. However, the mechanistic insight into the interaction between ILs and RNA is unclear. To the best of our knowledge, no attempts are made so far to provide a molecular view. This work aims to establish a detailed understanding of how ILs enable structural stability to RNA sourced from Torula yeast. Herein, we manifest the hypothesis of multimodal binding of IL and its minimal perturbation to the macromolecular structure, with several spectroscopic techniques such as time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) aided with molecular dynamics at microsecond time scales. Relevant structural and thermodynamic details from biophysical experiments confirm that even long-term RNA preservation with ILs is a possible alternative devoid of any structural deformation. These results establish a unifying mechanism of how ILs are maintaining conformational integrity and thermal stability. The atomistic insights are transferable for their potential applications in drug delivery and biomaterials by considering the advantages of having maximum structural retention and minimum toxicity.

9.
ACS Omega ; 6(29): 19304-19313, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337267

ABSTRACT

The products of the Friedlander reaction, i.e., 1,8-naphthyridines, have far-reaching impacts in materials science, chemical biology, and medicine. The reported synthetic methodologies elegantly orchestrate the diverse synthetic routes of naphthyridines but require harsh reaction conditions, organic solvents, and expensive metal catalysts. Here, we introduce gram-scale synthesis of 1,8-naphthyridines in water using an inexpensive and biocompatible ionic liquid (IL) as a catalyst. This is the first-ever report on the synthesis of naphthyridines in water. This is a one-step reaction, and the product separation is relatively easy. The choline hydroxide (ChOH) is used as a metal-free, nontoxic, and water-soluble catalyst. In comparison to other catalysts reported in the literature, ChOH has the advantage of forming an additional hydrogen bond with the reactants, which is the vital step for the reaction to happen in water. Density functional theory (DFT) and noncovalent interaction (NCI) plot index analysis provide the plausible reaction mechanism for the catalytic cycle and confirm that hydrogen bonds with the IL catalyst are pivotal to facilitate the reaction. Molecular docking and molecular dynamics (MD) simulations are also performed to demonstrate the potentialities of the newly synthesized products as drugs. Through MD simulations, it was established that the tetrahydropyrido derivative of naphthyridine (10j) binds to the active sites of the ts3 human serotonin transporter (hSERT) (PDB ID: 6AWO) without perturbing the secondary structure, suggesting that 10j can be a potential preclinical drug candidate for hSERT inhibition and depression treatment.

10.
Phys Chem Chem Phys ; 23(27): 14755-14763, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34195713

ABSTRACT

While electrostatic interactions are exceedingly accountable for biological functions, no simple method exists to directly estimate or measure the electrostatic field in protein active sites. The electrostatic field inside the protein is generally inferred from the shift in the vibrational stretching frequencies of nitrile and thionitrile probes at the active sites through several painstaking and time-consuming experiments like vibrational Stark effect spectroscopy (VSS). Here we present a simple, fast, and reliable methodology, which can efficiently predict the vibrational Stark tuning rates (VSRs) of a large variety of probes within 10% error of the reported experimental data. Our methodology is based on geometry optimization and frequency calculations in the presence of an external electric field to predict the accurate VSR of newly designed nitrile/thionitrile probes. A priori information of VSRs is useful for difficult experiments such as catalytic/enzymatic study and in structural biology. We also applied our methodology successfully to estimate the electric field inside fullerenes and nano-onions, which is encouraging for researchers to adopt it for further applications in materials science and supramolecular chemistry.


Subject(s)
Fullerenes/chemistry , Proteins/chemistry , Catalysis , Catalytic Domain , Electromagnetic Fields , Models, Molecular , Nitriles/chemistry , Protein Conformation , Static Electricity , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry , Vibration
11.
Chemistry ; 27(13): 4373-4383, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33210381

ABSTRACT

Designing a potential protein-ligand pair is pivotal, not only to track the protein structure dynamics, but also to assist in an atomistic understanding of drug delivery. Herein, the potential of a small model thioamide probe being used to study albumin proteins is reported. By monitoring the Förster resonance energy transfer (FRET) dynamics with the help of fluorescence spectroscopic techniques, a twofold enhancement in the FRET efficiency of 2-thiopyridone (2TPY), relative to that of its amide analogue, is observed. Molecular dynamics simulations depict the relative position of the free energy minimum to be quite stable in the case of 2TPY through noncovalent interactions with sulfur, which help to enhance the FRET efficiency. Finally, its application is shown by pairing thiouracils with protein. It is found that the site-selective sulfur atom substitution approach and noncovalent interactions with sulfur can substantially enhance the FRET efficiency, which could be a potential avenue to explore in the design of FRET probes to study the structure and dynamics of biomolecules.


Subject(s)
Fluorescence Resonance Energy Transfer , Thioamides , Ligands , Molecular Dynamics Simulation , Proteins
12.
Chemphyschem ; 21(23): 2525-2535, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33022820

ABSTRACT

Ionic liquids (ILs) are useful in pharmaceutical industries and biotechnology as alternative solvents or sources for protein extraction and purification, preservation of biomolecules and for regulating the catalytic activity of enzymes. However, the binding mechanism, the non-covalent forces responsible for protein-IL interactions and dynamics of proteins in IL need to be investigated in depth for the effective use of ILs as alternatives. Herein, we disclose the molecular level understanding of the structural intactness and reactivity of a model protein cytochrome c (Cyt c) in biocompatible threonine-based ILs with the help of experimental techniques such as isothermal titration calorimetry (ITC), fluorescence spectroscopy, transmission electron microscopy (TEM) as well as molecular docking. Hydrophobic and electrostatic forces are responsible for the structural and conformational integrity of Cyt c in IL. The ITC experiments revealed the Cyt c-IL binding free energies are in the range of 10-14 kJ/mol and the molecular docking studies demonstrated that ILs interact at the surfaces of Cyt c. The results look promising as the ILs used here are non-toxic and biocompatible, and thus may find potential applications in structural biology and biotechnology.


Subject(s)
Cytochromes c/chemistry , Ionic Liquids/chemistry , Threonine/chemistry , Binding Sites , Calorimetry , Cytochromes c/metabolism , Hydrophobic and Hydrophilic Interactions , Ionic Liquids/metabolism , Microscopy, Electron, Transmission , Molecular Docking Simulation , Spectrometry, Fluorescence , Static Electricity , Threonine/metabolism
13.
Acc Chem Res ; 53(8): 1580-1592, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32677432

ABSTRACT

Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.


Subject(s)
Selenium/chemistry , Sulfur/chemistry , Cysteine/chemistry , Hydrogen Bonding , Iron-Sulfur Proteins/chemistry , Metal-Organic Frameworks/chemistry , Quantum Theory , Rubredoxins/chemistry , Static Electricity
14.
Chemphyschem ; 21(16): 1826-1835, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32506748

ABSTRACT

The conceptual development of aromaticity is essential to rationalize and understand the structure and behavior of aromatic heterocycles. This work addresses for the first time, the interconnection between aromaticity and sulfur/selenium centered hydrogen bonds (S/SeCHBs) involved in representative heterocycle models of canonical nucleobases (2-Pyridone; 2PY) and its sulfur (2-Thiopyridone; 2TPY) and selenium (2-Selenopyridone; 2SePY) analogs. The nucleus-independent chemical shift (NICS) and gauge induced magnetic current density (GIMIC) values suggested significant reduction of aromaticity upon replacement of exocyclic carbonyl oxygen with sulfur and selenium. However, we observed two-fold (57 %) and three-fold (80 %) enhancement in the aromaticity for 2TPY dimer, and 2SePY dimer, respectively which are connected through S/SeCHBs. Aromaticity enhancement was also noticed in 1 : 1 H-bonded complexes (heterodimers), micro hydrated clusters and for bulk hydration. It is expected that exocyclic S and Se incorporation into heterocycles without compromising aromatic loss would definitely reinforce to design new supramolecular building blocks via S/SeCH-bonded complexes.

15.
Phys Chem Chem Phys ; 22(16): 8988-8997, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32293624

ABSTRACT

In contrast to the conventional and non-conventional non-covalent interactions (NCIs) such as hydrogen bond and carbon bond, a bidirectional NCI without π- and/or lone pair(s) of electrons has never been reckoned until the present report, which confirms that this type of NCI can be possible with the involvement of mostly σ-electrons. This newly discovered NCI can be coined as carbo-hydrogen bond (CH-bond) based on its resemblances with both carbon bond (C-bond) and hydrogen bond (H-bond) or Ci:::H interaction. A detailed crystal structure analysis of 5-cyano-1,3-dehydroadamantane, which contains inverted carbon atoms (Ci) and Ci-Ci σ-bond, gave us the opportunity to unveil the very first existence of the Ci:::H interaction. With the aid of several quantum chemical calculations, we came to the conclusion that molecules carrying Ci-Ci σ-bonds are capable of forming CH-bonds with main group hydrides through the σCi-Ci → σ*X-H (H-bond) and σX-H → σ*Ci-Ci (C-bond) orbital interactions. The interaction energy can be as much as -31.27 kJ mol-1, which is comparable to that of the water dimer and it is also one of the prominent attractive forces that hold the molecules together in the crystal structure, can be responsible for the enzymatic activity of cytochrome P411-E10 and the formation of non-covalent organic framework (NCOF) with trigonal and tetragonal CH-bond connectors.

16.
Dalton Trans ; 49(5): 1424-1432, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31915769

ABSTRACT

A new method for the synthesis of meso-substituted porphyrins was developed. In this two-step methodology, the first step involves the condensation of pyrroles/dipyrromethanes with aldehydes in a water-methanol mixture under acidic conditions. The second step involves manganese induced cyclization followed by oxidation via PhIO/O2. This methodology has been useful for the synthesis of a wide range of trans-A2B2 porphyrins and also symmetric porphyrins in moderate to good yields. A detailed investigation of the manganese induced cyclization reaction has allowed us to characterize a Mn-porphyrinogen complex. A series of analytical and spectroscopic techniques and DFT calculations have led us to the conclusion that the putative intermediate species are trans-manganese(iv)-dihydroxide complexes. EPR and magnetic susceptibility measurements helped us to assign the oxidation state of the manganese complexes in their native state. The assumption of trans-manganese(iv)-dihydroxide as the true intermediate for this porphyrin synthesis has been authenticated via in situ UV-Vis experiments. This new methodology is certainly different from other previously reported methodologies in many aspects and most importantly these reactions can be easily performed on a gram scale for the synthesis of porphyrins.

17.
J Phys Chem B ; 123(47): 10100-10109, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31682757

ABSTRACT

The demand for long-term storage and stability of proteins has increased substantially in the pharmaceutical industries, yet the sensitivity of proteins toward the environment has become a cardinal task for researchers. To deal with this, we have selected a multifunctional enzyme Cytochrome-c (Cyt-c) involved in many chemical and biochemical reactions as model protein, which is very sensitive and loses structural integrity on exposure to the environment. The remarkable features of ionic liquids (ILs) have entitled them as alternatives to aqueous and organic solvents for solubility, storage, and surrogate reaction medium. Hence, we have adapted the biocompatible and nontoxic cation and anion based amino acid ILs (CAAAILs) as potential solvents for storage and stability of Cyt-c. Herein, we report the molecular insights and thermodynamics of interaction between CAAAILs and Cyt-c with the help of isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), UV-vis, CD, and fluorescence spectroscopy as well as molecular docking and molecular dynamics (MD) simulations. The structure and stability of Cyt-c remain unchanged in the presence of CAAAILs. Both electrostatic and hydrophobic interactions are accountable for the binding of CAAAILs in the region between terminal helices and the loop of Cyt-c through nonspecific multiple binding sites, which can be exploited for storage and stability of proteins and will be helpful in designing new biobased ILs for biochemical applications.


Subject(s)
Amino Acids/chemistry , Cytochromes c/chemistry , Excipients/chemistry , Ionic Liquids/chemistry , Animals , Cattle , Molecular Dynamics Simulation , Protein Stability
18.
J Phys Chem A ; 123(11): 2227-2236, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30802055

ABSTRACT

The significance of dispersion contribution in the formation of strong hydrogen bonds (H-bonds) can no more be ignored. It was illustrated that less electronegative and electropositive H-bond acceptors such as S, Se, and Te are also capable of forming strong N-H···Y H-bonds, mostly due to the high polarizabilities of H-bond acceptor atoms. Herein, for the first time, we report the evidence of formation of nonconventional M-H···Y H-bonds between metal hydrides (M-H, M = Mn, Fe, Co) and chalcogen H-bond acceptors (Y = O, S, or Se). The nature and the strength of unusual M-H···Y H-bonds were revealed by several quantum chemical calculations and H-bond descriptors. The structural parameters, electron density topology, donor-acceptor natural bond orbital (NBO) interaction energies, and spectroscopic observables such as M-H stretching frequencies and 1H chemical shifts are well-correlated to manifest the existence and strength of M-H···Y H-bonding. The M-H···Y H-bonds are dispersive in nature, and the computed H-bond energies are found to be in the range from ∼5 to 30 kJ/mol, which can be compared to those of the conventional H-bonds such as O-H···O, N-H···O, and N-H···O═C H-bonds, etc.

19.
Angew Chem Int Ed Engl ; 57(50): 16496-16500, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30347500

ABSTRACT

Carbon bonds (C-bonds) are the highly directional noncovalent interactions between carbonyl-oxygen acceptors and sp3 -hybridized-carbon σ-hole donors through n→σ* electron delocalization. We have shown the ubiquitous existence of C-bonds in proteins with the help of careful protein structure analysis and quantum calculations, and have precisely determined C-bond energies. The importance of conventional noncovalent interactions such as hydrogen bond (H-bonds) and halogen bond (X-bonds) in the structure and function of biological molecules are well established, while carbon bonds C-bonds have still to be recognized. We have shown that C-bonds are present in proteins, contribute enthalpically to the overall hydrophobic interaction and play a significant role in the photodissociation mechanism of myoglobin and the binding of nucleobases to proteins.


Subject(s)
Carbon/chemistry , Proteins/chemistry , Animals , Horses , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Myoglobin/chemistry , Quantum Theory , Thermodynamics
20.
ACS Cent Sci ; 4(12): 1642-1651, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30648148

ABSTRACT

Long-term storage and stability of DNA is of paramount importance in biomedical applications. Ever since the emergence of ionic liquids (ILs) as alternate green solvents to aqueous and organic solvents, their exploration for the extraction and application of DNA need conscientious understanding of the binding characteristics and molecular interactions between IL and DNA. Choline amino acid ILs (CAAILs) in this regard seem to be promising due to their non-cytotoxic, completely biobased and environment-friendly nature. To unravel the key factors for the strength and binding mechanism of CAAILs with DNA, various spectroscopic techniques, molecular docking, and molecular dynamics simulations were employed in this work. UV-Vis spectra indicate multimodal binding of CAAILs with DNA, whereas dye displacement studies through fluorescence emission confirm the intrusion of IL molecules into the minor groove of DNA. Circular dichorism spectra show that DNA retains its native B-conformation in CAAILs. Both isothermal titration calorimetry and molecular docking studies provide an estimate of the binding affinity of DNA with CAAILs ≈ 4 kcal/mol. The heterogeneity in binding modes of CAAIL-DNA system with evolution of time was established by molecular dynamics simulations. Choline cation while approaching DNA first binds at surface through electrostatic interactions, whereas a stronger binding at minor groove occurs via van der Waals and hydrophobic interactions irrespective of anions considered in this study. We hope this result can encourage and guide the researchers in designing new bio-ILs for biomolecular studies in future.

SELECTION OF CITATIONS
SEARCH DETAIL
...