Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
ChemMedChem ; 15(5): 430-448, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31945272

ABSTRACT

The orexin system is responsible for regulating the sleep-wake cycle. Suvorexant, a dual orexin receptor antagonist (DORA) is approved by the FDA for the treatment of insomnia disorders. Herein, we report the optimization efforts toward a DORA, where our starting point was (5-methoxy-4-methyl-2-[1,2,3]triazol-2-yl-phenyl)-{(S)-2-[5-(2-trifluoromethoxy-phenyl)-[1,2,4]oxadiazol-3-yl]-pyrrolidin-1-yl}methanone (6), a compound which emerged from our in-house research program. Compound 6 was shown to be a potent, brain-penetrating DORA with in vivo efficacy similar to suvorexant in rats. However, shortcomings from low metabolic stability, high plasma protein binding (PPB), low brain free fraction (fu brain), and low aqueous solubility, were identified and hence, compound 6 was not an ideal candidate for further development. Our optimization efforts addressing the above-mentioned shortcomings resulted in the identification of (4-chloro-2-[1,2,3]triazol-2-yl-phenyl)-{(S)-2-methyl-2-[5-(2-trifluoromethoxy-phenyl)-4H-[1,2,4]triazol-3-yl]-pyrrolidin-1-yl}l-methanone (42), a DORA with improved in vivo efficacy compared to 6.


Subject(s)
Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Oxadiazoles/pharmacology , Triazoles/pharmacology , Animals , Dogs , Male , Molecular Conformation , Orexin Receptor Antagonists/chemistry , Oxadiazoles/chemistry , Rats , Rats, Wistar , Sleep/drug effects , Stereoisomerism , Triazoles/chemistry
2.
ChemMedChem ; 14(13): 1257-1270, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31066976

ABSTRACT

The orexin system plays an important role in the regulation of wakefulness. Suvorexant, a dual orexin receptor antagonist (DORA) is approved for the treatment of primary insomnia. Herein, we outline our optimization efforts toward a novel DORA. We started our investigation with rac-[3-(5-chloro-benzooxazol-2-ylamino)piperidin-1-yl]-(5-methyl-2-[1,2,3]triazol-2-ylphenyl)methanone (3), a structural hybrid of suvorexant and a piperidine-containing DORA. During the optimization, we resolved liabilities such as chemical instability, CYP3A4 inhibition, and low brain penetration potential. Furthermore, structural modification of the piperidine scaffold was essential to improve potency at the orexin 2 receptor. This work led to the identification of (5-methoxy-4-methyl-2-[1,2,3]triazol-2-ylphenyl)-{(S)-2-[5-(2-trifluoromethoxyphenyl)-[1,2,4]oxadiazol-3-yl]pyrrolidin-1-yl}methanone (51), a potent, brain-penetrating DORA with in vivo efficacy similar to that of suvorexant in rats.


Subject(s)
Orexin Receptor Antagonists/chemical synthesis , Orexin Receptors/metabolism , Oxadiazoles/chemistry , Animals , Azepines/pharmacology , Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/metabolism , Dogs , Half-Life , Humans , Inhibitory Concentration 50 , Orexin Receptor Antagonists/metabolism , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/chemistry , Oxadiazoles/metabolism , Oxadiazoles/pharmacology , Rats , Sleep/drug effects , Structure-Activity Relationship , Triazoles/pharmacology
3.
J Pharmacol Exp Ther ; 362(3): 489-503, 2017 09.
Article in English | MEDLINE | ID: mdl-28663311

ABSTRACT

The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX1 and OX2) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met.


Subject(s)
Brain/drug effects , Brain/physiology , Drug Discovery/methods , Imidazoles/pharmacokinetics , Orexin Receptor Antagonists/pharmacokinetics , Pyrrolidines/pharmacokinetics , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Male , Rats , Rats, Wistar
4.
ChemMedChem ; 11(19): 2132-2146, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27390287

ABSTRACT

Starting from suvorexant (trade name Belsomra), we successfully identified interesting templates leading to potent dual orexin receptor antagonists (DORAs) via a scaffold-hopping approach. Structure-activity relationship optimization allowed us not only to improve the antagonistic potency on both orexin 1 and orexin 2 receptors (Ox1 and Ox2, respectively), but also to increase metabolic stability in human liver microsomes (HLM), decrease time-dependent inhibition of cytochrome P450 (CYP) 3A4, and decrease P-glycoprotein (Pgp)-mediated efflux. Compound 80 c [{(1S,6R)-3-(6,7-difluoroquinoxalin-2-yl)-3,8-diazabicyclo[4.2.0]octan-8-yl}(4-methyl-[1,1'-biphenyl]-2-yl)methanone] is a potent and selective DORA that inhibits the stimulating effects of orexin peptides OXA and OXB at both Ox1 and Ox2. In calcium-release assays, 80 c was found to exhibit an insurmountable antagonistic profile at both Ox1 and Ox2, while displaying a sleep-promoting effect in rat and dog models, similar to that of the benchmark compound suvorexant.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Discovery , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Animals , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/chemical synthesis , Cytochrome P-450 CYP3A Inhibitors/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Orexin Receptor Antagonists/chemical synthesis , Orexin Receptor Antagonists/chemistry , Rats , Rats, Wistar , Sleep/drug effects , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 25(9): 1884-91, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25838147

ABSTRACT

Starting from advanced pyrrolidin-2-one lead compounds, this novel series of small-molecule orexin receptor antagonists was further optimized by fine-tuning of the C-3 substitution at the γ-lactam ring. We discuss our design to align in vitro potency with metabolic stability and improved physicochemical/pharmacokinetic properties while avoiding P-glycoprotein-mediated efflux. These investigations led to the identification of the orally active 3-hydroxypyrrolidin-2-one 46, a potent and selective orexin-2 receptor antagonist, that achieved good brain exposure and promoted physiological sleep in rats.


Subject(s)
Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Pyrrolidinones/pharmacology , Sleep/drug effects , Administration, Oral , Animals , Dose-Response Relationship, Drug , Humans , Lactams/administration & dosage , Lactams/pharmacology , Molecular Structure , Orexin Receptor Antagonists/chemical synthesis , Orexin Receptor Antagonists/chemistry , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Rats , Structure-Activity Relationship
6.
Psychopharmacology (Berl) ; 232(8): 1383-93, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25319964

ABSTRACT

RATIONALE: Avoidance of contexts directly associated with fearful experiences represents an adaptive behavioral survival strategy. Over-interpretation of contextual cues leading to generalized avoidance of situations that are only remotely similar to the original fear context represents a pathologic process that contributes to anxiety disorders. Orexin neuropeptides modulate anxiety-like behavioral and physiological responses. OBJECTIVE: The objective of this paper was to investigate the impact of pharmacological orexin receptor blockade on generalized avoidance behavior. METHODS: Rats received a single electric foot-shock in the dark side of a two-compartment shuttle box followed by situational context reminders. After shock, rats were treated chronically (3 weeks) with the orexin receptor antagonist almorexant or with the selective serotonin reuptake inhibitor sertraline, used as positive anxiolytic control. In week 3, avoidance behavior was measured under conditions of high (dark-light (DL)-box) and low (elevated plus maze (EPM)) similarity to the original shock context. Avoidance behavior was re-assessed 5 and 17 weeks after treatment termination. RESULTS: Avoidance in the DL box (contextual fear memory) remained unaffected by any treatment and lasted 20 weeks post-shock exposure. Avoidance in the EPM (neophobic fear generalization) was partially attenuated during treatment with almorexant and sertraline at week 3. Following 5 and 17 weeks of drug washout, avoidance in the EPM was significantly reduced in almorexant- but not in sertraline-treated rats. Almorexant also reduced persistent avoidance in the EPM upon treatment initiation 3 weeks after shock exposure. CONCLUSION: Chronic orexin receptor blockade in rats reduces both the development and persistence of generalized avoidance in situations with low similarity to the initial shock context.


Subject(s)
Avoidance Learning/physiology , Electroshock/psychology , Fear/physiology , Fear/psychology , Orexin Receptor Antagonists , Orexin Receptors/physiology , Acetamides/pharmacology , Acetamides/therapeutic use , Animals , Avoidance Learning/drug effects , Electroshock/adverse effects , Fear/drug effects , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Male , Memory/drug effects , Memory/physiology , Rats , Rats, Sprague-Dawley , Sertraline/pharmacology , Sertraline/therapeutic use
7.
ChemMedChem ; 9(11): 2486-96, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25147058

ABSTRACT

The orexin system consists of two G-protein-coupled receptors, the orexin 1 and orexin 2 receptors, widely expressed in diverse regions of the brain, and two peptide agonists, orexin A and orexin B, which are produced in a small assembly of neurons in the lateral hypothalamus. The orexin system plays an important role in the maintenance of wakefulness. Several compounds (almorexant, SB-649868, suvorexant) have been in advanced clinical trials for treating primary insomnia. ACT-462206 is a new, potent, and selective dual orexin receptor antagonist (DORA) that inhibits the stimulating effects of the orexin peptides at both the orexin 1 and 2 receptors. It decreases wakefulness and increases non-rapid eye movement (non-REM) and REM sleep while maintaining natural sleep architectures in rat and dog electroencephalography/electromyography (EEG/EMG) experiments. ACT-462206 shows anxiolytic-like properties in rats without affecting cognition and motor function. It is therefore a potential candidate for the treatment of insomnia.


Subject(s)
Brain/metabolism , Neurotransmitter Agents/chemistry , Orexin Receptor Antagonists , Pyrrolidines/chemistry , Sulfonamides/chemistry , Animals , Blood-Brain Barrier/metabolism , Dogs , Half-Life , Humans , Madin Darby Canine Kidney Cells , Male , Neurotransmitter Agents/pharmacokinetics , Orexin Receptors/metabolism , Proline/chemistry , Pyrrolidines/pharmacokinetics , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics
8.
Bioorg Med Chem Lett ; 24(4): 1201-8, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24447850

ABSTRACT

Starting from a thiazolidin-4-one HTS hit, a novel series of substituted lactams was identified and developed as dual orexin receptor antagonists. In this Letter, we describe our initial efforts towards the improvement of potency and metabolic stability. These investigations delivered optimized lead compounds with CNS drug-like properties suitable for further optimization.


Subject(s)
Drug Discovery , Lactams/pharmacology , Orexin Receptor Antagonists , Animals , Dose-Response Relationship, Drug , Humans , Lactams/chemistry , Lactams/metabolism , Molecular Structure , Rats , Rats, Wistar , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 23(13): 3857-63, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23719231

ABSTRACT

Replacement of the dimethoxyphenyl moiety in the core skeleton of almorexant by appropriately substituted imidazoles afforded novel 1-chloro-5,6,7,8-tetrahydroimidazo[1,5-a]pyrazine derivatives as potent dual orexin receptor antagonists. We describe in this Letter our efforts to further optimize the potency and brain penetration of these derivatives by fine-tuning of the pivotal phenethyl motif, and we comment on the sleep-promoting activity of selected compounds in a rat electroencephalographic (EEG) model.


Subject(s)
Imidazoles/pharmacology , Orexin Receptor Antagonists , Pyrazines/pharmacology , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
10.
ChemMedChem ; 8(6): 898-903, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23589487

ABSTRACT

Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats.


Subject(s)
Benzeneacetamides/pharmacology , Brain/metabolism , Drug Discovery , Isoquinolines/pharmacology , Orexin Receptor Antagonists , Administration, Oral , Animals , Benzeneacetamides/administration & dosage , Benzeneacetamides/blood , Dose-Response Relationship, Drug , Humans , Isoquinolines/administration & dosage , Isoquinolines/blood , Orexin Receptors/metabolism , Rats , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 23(7): 2212-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23434414

ABSTRACT

A novel series of non-peptidic OX1R/OX2R orexin receptor antagonists was prepared by heterocyclic replacement of the dimethoxyphenyl moiety contained in the tetrahydroisoquinoline core skeleton of almorexant. Introduction of substituted imidazole moieties delivered potent dual orexin receptor antagonists with nanomolar potency for hOX1R and hOX2R suitable for further fine-tuning. The preparation of these novel orexin receptor antagonists and the outcome of preliminary structure-activity relationship studies are described in this communication.


Subject(s)
Pyrazines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Orexin Receptors , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
12.
Int J Neuropsychopharmacol ; 16(2): 417-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22436395

ABSTRACT

Dual orexin receptor (OXR) antagonists emerge as a novel therapeutic class to treat insomnia that, based on anti-addictive effects of selective OXR type 1 antagonists in rats, might be associated with less abuse liability than commonly used γ-aminobutyric acid (GABA) receptor modulators. Here, we studied the effects of the sleep-enabling dual OXR antagonist almorexant on conditioned place preference (CPP) and locomotor sensitization in rats. First, we compared almorexant to the GABA metabolite γ-hydroxybutyrate (GHB), which is clinically used as a sleep-inducing drug and which is associated with mild abuse liability. Whereas conditioning with GHB induced significant place preference, conditioning with almorexant did not. Second, we tested the potential of almorexant to interfere with the conditioned rewarding or locomotor sensitizing effects related to psychostimulants or opiates. Almorexant attenuated the expression of CPP to high doses of cocaine (15 mg/kg) and d.l-amphetamine (2 mg/kg), but not to high dose of morphine (10 mg/kg). Conversely, almorexant interfered with the expression of locomotor sensitization to morphine, but not with that to cocaine and d.l-amphetamine. Third, we observed that chronic almorexant (12 d) treatment in morphine, cocaine or amphetamine pre-conditioned and locomotor-sensitized rats had no influence on the maintenance of CPP and locomotor sensitization when tested after almorexant washout. Our findings suggest that almorexant itself does not exert conditioned rewarding effects in the rat and that it may acutely interfere with the expression of CPP or locomotor sensitization in a drug-dependent manner (monoaminergic psychostimulants vs. opiates).


Subject(s)
Acetamides/pharmacology , Anesthetics/pharmacology , Conditioning, Operant/drug effects , Dopamine Agents/pharmacology , Flavoproteins/agonists , Isoquinolines/pharmacology , Locomotion/drug effects , Amphetamine/pharmacology , Animals , Cocaine/pharmacology , Drug Interactions , Dual Oxidases , Male , Morphine/pharmacology , Rats , Rats, Sprague-Dawley , Reward
13.
Psychoneuroendocrinology ; 38(4): 560-71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22917622

ABSTRACT

The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.


Subject(s)
Acetamides/pharmacology , Adrenal Glands/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Isoquinolines/pharmacology , Neuropeptides/physiology , Orexin Receptor Antagonists , Pituitary Gland/metabolism , Adrenocorticotropic Hormone/blood , Animals , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Corticosterone/blood , Corticotropin-Releasing Hormone/pharmacology , Hypnotics and Sedatives/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , Hypothalamus/metabolism , Intracellular Signaling Peptides and Proteins/biosynthesis , Male , Neuropeptides/biosynthesis , Orexin Receptors/biosynthesis , Orexins , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/physiology , Rats , Restraint, Physical/physiology , Sleep Stages/drug effects , Wakefulness/drug effects
14.
Front Pharmacol ; 4: 165, 2013.
Article in English | MEDLINE | ID: mdl-24416020

ABSTRACT

The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS). Rats were fed either standard chow (SC) or a cafeteria (CAF) diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S) diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks) and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure) were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% vs. controls) and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG) plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this model.

15.
Psychopharmacology (Berl) ; 223(4): 465-75, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22592903

ABSTRACT

RATIONALE: The rat fear-potentiated startle (FPS) paradigm is a translational model of conditioned fear involving central amygdala pathways of the brain. Hypothalamic orexin neurons have input-output projections to the amygdala; they modulate vigilance and stress-related responses. OBJECTIVE: To investigate whether the transient pharmacological blockade of orexin receptors moderates the conditioned fear response. METHODS: F344 rats received acute oral treatment with the dual orexin receptor antagonist almorexant (30-300 mg/kg) or with one of the clinically effective anxiolytics diazepam (1-10 mg/kg), buspirone (10-100 mg/kg), fluoxetine (3-30 mg/kg), and sertraline (10-100 mg/kg). Drug effects on startle responses were assessed in both fear- and non-fear-conditioned rats; on forepaw grip and horizontal wire motor performance, and on elevated plus maze (EPM) behavior. RESULTS: Diazepam and almorexant both dose-dependently decreased FPS in the presence of the fear-conditioned stimulus (CS; light) more prominently than background startle in absence of the CS (dark). Diazepam induced myorelaxation and reduced startle responses in control non-fear-conditioned rats. Almorexant had no myorelaxant effects and left startle responses under light in non-fear-conditioned rats intact. On the EPM, diazepam showed anxiolytic-like effects, almorexant not. Buspirone demonstrated anxiolytic-like effects on FPS by simultaneously reducing CS-related startle and increasing no-CS-background startle. Fluoxetine did not affect FPS, whereas sertraline showed anxiogenic-like effects. CONCLUSIONS: Almorexant reduced FPS, but did not affect EPM behavior. Almorexant's overall pattern of effects on FPS was comparable to but less pronounced than that of the anxiolytic benzodiazepine diazepam. The endogenous orexin system actively contributes to fear-conditioned startle reactions in the rat.


Subject(s)
Acetamides/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Isoquinolines/pharmacology , Neuropeptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Reflex, Startle/drug effects , Acetamides/administration & dosage , Animals , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Anxiety/physiopathology , Behavior, Animal/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Fear/drug effects , Isoquinolines/administration & dosage , Male , Maze Learning/drug effects , Orexin Receptors , Orexins , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors
16.
Behav Brain Res ; 221(1): 34-42, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21354212

ABSTRACT

The fear-potentiated startle (FPS) and the light-enhanced startle (LES) paradigms are rodent tests of fear and anxiety, which combine face validity with predictive validity for clinically effective anxiolytic drugs. However, systematic strain comparisons aimed at identifying a rat strain that shows robust and reliable fear and anxiety responses in both models are missing. Here, we investigated four commonly used laboratory rat strains: Wistar, Sprague Dawley, Long-Evans and F344. Following strong cued fear conditioning training [60 conditioned stimulus-unconditioned stimulus (CS-US) pairings], all strains except Wistar exhibited significant FPS responses. F344 rats showed the strongest FPS response. Following milder cued fear conditioning protocols, designed to reduce the underlying component of contextual fear conditioning (by context pre-exposure or less CS-US pairings), also Wistar rats were able to show significant FPS, albeit still to a lesser extent than F344 rats tested under identical conditions. When tested in the LES protocol (light intensity ∼ 1500 lx), all strains except Long-Evans displayed significant light-enhanced startle responses. F344 and Wistar showed the strongest LES responses, which were of similar magnitude. The most sensitive strain in both paradigms, F344, was chosen for further pharmacological validation. The clinically active anxiolytic alprazolam (0.3, 1, 3mg/kg p.o.) dose-dependently reduced both fear-like responses in the FPS paradigm and anxiety-like responses in the LES paradigm at non-myorelaxant dosages. We propose that the F344 rat strain is particularly suited for the predictability assessment of novel anxiolytic drugs in both startle paradigms.


Subject(s)
Alprazolam/pharmacology , Conditioning, Classical/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Fear/drug effects , Reflex, Startle/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Dose-Response Relationship, Drug , Hand Strength , Male , Photic Stimulation , Rats , Rats, Inbred F344 , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Wistar , Species Specificity
17.
Neuropsychopharmacology ; 36(4): 848-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21150905

ABSTRACT

Current insomnia treatments such as γ-aminobutyric acid (GABA) receptor modulators are associated with sedative and muscle-relaxant effects, which increase when drug intake is combined with alcohol. This study compared the novel sleep-enabling compound almorexant (ACT-078573-hydrochloride), a dual orexin receptor antagonist, with the positive GABA(A)-α1 receptor modulator zolpidem. Both compounds were administered alone or in combination with ethanol, and their effects on forced motor performance were determined in Wistar rats upon waking after treatment. To detect substance-induced sedation and myorelaxation, time spent on an accelerating rotating rod (rotarod) and forepaw grip strength were measured. Zolpidem (10, 30, and 100 mg/kg, p.o.) and ethanol (0.32, 1, and 1.5 g/kg, i.p.) dose-dependently decreased rotarod performance and grip strength, whereas almorexant (30, 100, and 300 mg/kg, p.o.) did not. Doses of ethanol (0.32 and 1 g/kg), which were ineffective when administered alone, showed interactions with zolpidem (10 and 30 mg/kg) leading to reduced rotarod performance and grip strength; in contrast, combination of ethanol (0.32 and 1 g/kg) with almorexant (100 and 300 mg/kg) did not reduce performance or grip strength below ethanol alone. We conclude that unlike zolpidem, almorexant does not interfere with forced motor performance or grip strength in the rat, nor does it further increase the sedative effects of ethanol. Our results suggest that the effect of almorexant can be immediately reversed to full alertness like under physiological sleep, and that almorexant is less likely to show strong sedation, excessive myorelaxation, or interaction with alcohol than commonly prescribed hypnotics such as zolpidem.


Subject(s)
Acetamides/administration & dosage , Ethanol/administration & dosage , GABA-A Receptor Agonists/administration & dosage , Isoquinolines/administration & dosage , Motor Activity/drug effects , Pyridines/administration & dosage , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, GABA-A/physiology , Receptors, Neuropeptide/antagonists & inhibitors , Acetamides/pharmacology , Animals , Drug Interactions/physiology , Drug Therapy, Combination , Ethanol/pharmacology , GABA-A Receptor Agonists/pharmacology , Isoquinolines/pharmacology , Male , Motor Activity/physiology , Orexin Receptors , Pyridines/pharmacology , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/physiology , Receptors, GABA-A/metabolism , Receptors, Neuropeptide/physiology , Zolpidem
18.
Psychopharmacology (Berl) ; 212(2): 145-54, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20631993

ABSTRACT

RATIONALE: Orexins play a key role in the maintenance of alertness and are implicated in the modulation of diverse physiological processes, including cognitive function. Almorexant, a dual orexin receptor antagonist, transiently and reversibly blocks the action of orexin peptides at both OX(1) and OX(2) receptors and increases time spent in rapid eye movement (REM) and non-REM sleep. OBJECTIVES: We explored the direct effects on learning and memory of single and repeated administration of almorexant in rats. METHODS: Following administration of high doses of almorexant (300 mg/kg, p.o.), scopolamine (0.8 mg/kg, i.p.), combination almorexant-scopolamine, or vehicle alone, rats were trained on a Morris water maze spatial navigation task, or on a passive avoidance task. RESULTS: Rats treated with almorexant learned the spatial navigation task with similar efficacy as vehicle-treated animals. After 4 days, almorexant-but not vehicle-treated rats had established spatial memory; after 8 days, spatial memory had been established in both vehicle-and almorexant-treated rats. Scopolamine-treated rats failed to learn the spatial task. Both vehicle-and almorexant-but not scopolamine-treated rats demonstrated passive avoidance learning. Almorexant did not ameliorate scopolamine-induced impairment of learning in either task. CONCLUSIONS: Rats treated with almorexant are fully capable of spatial and avoidance learning.


Subject(s)
Acetamides/pharmacology , Isoquinolines/pharmacology , Maze Learning/drug effects , Memory/drug effects , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Acetamides/administration & dosage , Animals , Avoidance Learning/drug effects , Drug Administration Schedule , Isoquinolines/administration & dosage , Male , Muscarinic Antagonists/toxicity , Orexin Receptors , Rats , Rats, Long-Evans , Scopolamine/toxicity , Time Factors
20.
Bioorg Med Chem Lett ; 20(5): 1539-42, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20144866

ABSTRACT

A novel series of dual orexin receptor antagonists was prepared by heteroaromatic five-membered ring system replacement of the dimethoxyphenyl moiety contained in the tetrahydroisoquinoline core skeleton of almorexant. Thus, replacement of the dimethoxyphenyl by a substituted pyrazole and additional optimization of the substitution pattern of the phenethyl motif allowed the identification of potent antagonists with low nanomolar affinity for hOX(1)R and hOX(2)R. The synthesis and structure-activity relationship of these novel antagonists will be discussed in this communication. These investigations furnished several suitable candidates for further evaluation in in vivo studies in rats.


Subject(s)
Pyrazoles/chemistry , Pyridines/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Acetamides/chemistry , Acetamides/pharmacology , Animals , Isoquinolines/chemistry , Isoquinolines/pharmacology , Orexin Receptors , Pyridines/chemical synthesis , Pyridines/pharmacology , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...