Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Poult Sci ; 101(5): 101789, 2022 May.
Article in English | MEDLINE | ID: mdl-35346494

ABSTRACT

Poultry nutrition and feed manufacturing are interrelated for a variety of reasons. Diet formulation is essential for optimizing bird growth and feed conversion, but compositional differences and the presence of certain feed additives can alter the gastrointestinal microbial composition and functionality. Not only does dietary composition and digestibility influence poultry performance, but specific physical characteristics such as feed particle size and thermal treatments can impact the avian gastrointestinal tract (GIT) microbiota. Poultry feeds also have a characteristic microbial ecology consisting of pathogenic and nonpathogenic microorganisms. Some feed-borne pathogens such as Salmonella are well studied and linked with the colonization of birds consuming the feed. However, much less is known about the nonpathogenic feed microbiome and what impact that might have on the bird's GIT. This review discusses the potential interaction between poultry feed and the GIT microbiome, microbial ecology of feed, application of microbiome analyses to feed, and approaches for communicating these complex data sets to the poultry industry.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animal Feed/analysis , Animals , Chickens , Gastrointestinal Tract , Poultry
2.
Poult Sci ; 99(5): 2645-2649, 2020 May.
Article in English | MEDLINE | ID: mdl-32359600

ABSTRACT

Feed additives can be alternatives to antibiotics for routinely encountered pathogens in the poultry production. The objective of this study was to understand effects of organic acid mixture on growth parameters and Salmonella Typhimurium (ST) colonization in broilers. Organic acid mixture is a feed-grade buffered formic acid and sodium formate mixture (Amasil NA). A total of 800 1-day-old Cobb500 males were fed one of the five dietary treatments: a negative control diet without ST challenge (NC), positive control diet with ST challenge (PC), 0.3% organic acid mixture with ST, 0.6% organic acid mixture with ST, and 0.9% organic acid mixture with ST. Treatments were assigned to 20 pens with 40 chicks/pen and 4 replicates of each treatment. Chickens were challenged with 107 CFU/mL of nalidixic acid-resistant ST (STNAR) 4-D posthatch. In the grower phase, feed conversion rate was significantly reduced in the 9% organic acid mixture compared with the PC. The body weight and body weight gain (BWG) were not affected either in the starter or grower phases. However, in the finisher phase, the nonchallenged NC had higher BWG than the PC (P < 0.05), whereas there were no differences in BWG among the NC and organic acid mixture fed groups. In addition, there was a significant effect of organic acid mixture on the colonization of cecal STNAR. At 9 dpi, cecal STNAR was 3.28 log10 in the PC that was reduced to 2.65 log10 at 0.3%, 1.40 log10 at 0.6%, and 0.84 log10 in 0.9% organic acid mixture. At 24 dpi, cecal STNAR recovery was 0.81, 0.99, 0.53, and 0.33 log10 in the PC and 0.3, 0.6, and 0.9% organic acid mixture, respectively. Similarly, at 38 dpi, cecal STNAR was 0.26, 0.11, 0.33, and 0 log10 in the PC, 0.3, 0.6, and 0.9%, respectively. These results show that organic acid mixture can be one dietary strategy to control ST infection and maintain efficient growth performance.


Subject(s)
Chickens , Formates/metabolism , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Body Weight/drug effects , Chickens/growth & development , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Drug Resistance, Bacterial , Formates/administration & dosage , Male , Nalidixic Acid/pharmacology , Salmonella typhimurium/drug effects , Weight Gain/drug effects
3.
PLoS One ; 13(5): e0197733, 2018.
Article in English | MEDLINE | ID: mdl-29772023

ABSTRACT

Prepartum supplementation with conjugated linoleic acid (CLA) may influence lipolysis and hyperketonemia in dairy cows. The objective of this study was to examine the effect of prepartum CLA supplementation on lactation performance and serum fatty acids (FA) and ß-hydroxybutyrate (BHB) in early lactation dairy cows, and secondarily on reproductive performance. Multiparous cows were enrolled in the study at 18 days prior to expected calving date, and randomly assigned 100 g/day of Lutrell Pure (BASF, Ludwigshafen, Germany; 75% FA), providing 10 g/day of each CLA isomer (trans-10 cis-12 and cis-9 trans-11 CLA) or equivalent amount of rumen inert fatty acids as control (78 g/day of Energy Booster 100; Milk Specialties Global, Eden Prairie, MN). Treatments were top dressed daily to individual cows from enrollment to calving and all cows were offered the same ration. Blood samples were collected on the first day of supplementation, 10 days prepartum, and 1, 7, 14, and 30 days postpartum. Hyperketonemia was defined as serum BHB ≥ 1.2 mM. Milk yield was recorded daily until 60 days postpartum and averaged weekly. Milk samples were obtained weekly for component analysis. Prepartum CLA supplementation tended to increase serum concentration of cis-9, trans-11 CLA and increased trans-10, cis-12 CLA prepartum. Cows supplemented with CLA had increased milk protein yield and tended to have increased milk fat yield and milk yield, which together resulted in greater energy content of milk. Cows supplemented with CLA had lower serum FA on day 1 and 7 postpartum and overall lower serum BHB postpartum, which resulted in decreased prevalence of hyperketonemia on day 14 postpartum. There were no differences in body condition score change, other health disorders, or reproductive outcomes by treatment. Together, these findings indicate that prepartum CLA supplementation may be a plausible strategy to positively influence postpartum performance.


Subject(s)
3-Hydroxybutyric Acid/blood , Fatty Acids/blood , Linoleic Acids, Conjugated/administration & dosage , Milk/metabolism , Animals , Cattle , Dietary Supplements , Female , Lactation
4.
Anim Sci J ; 80(3): 296-304, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20163639

ABSTRACT

Three experiments were conducted to compare the excretion of water-soluble phosphorus (P) of starter, grower, and finisher pigs fed corn-soybean meal-based P-deficient basal diet containing no added inorganic P (B), P-adequate diet (the basal diet with added dicalcium phosphate; B + P), the basal diet plus 500 units of microbial phytase/kg (B + 500), or the basal diet plus 1000 units of microbial phytase/kg (B + 1000). There were 6 barrows per diet, in a randomized complete block design, with an average initial body weight of 10.4, 20.0, or 51.1 kg for each of starter, grower, and finisher pigs in the three phosphorus balance experiments, respectively. In the experiments, the addition of dicalcium phosphate or phytase to the basal diet increased (P < 0.05) the digestibility and retention of P, and there were linear reductions (P < 0.05) in water-soluble P excretion as a result of supplementing the basal diet with phytase. In the starter pig experiment, phytase addition at 500 or 1000 units/kg reduced (P < 0.05) water-soluble P excretion by 28 or 42%, respectively when compared with the B + P diet. In the grower pig experiment, adding phytase at 500 or 1000 units/kg reduced (P < 0.05) water-soluble P excretion by 24 or 34%, respectively when compared with the B + P diet. The use of phytase at 500 or 1000 units/kg reduced (P < 0.05) water-soluble P excretion by 11 or 30%, respectively in the finisher pig experiment. The proportion of water-soluble phosphorus in total phosphorus was not affected by dietary treatment in any of the three experiments. In conclusion, adding phytase at 1000 units/kg to a corn-soybean meal-based P-deficient diet basal diet containing no added inorganic P compared with B + P diet reduced the daily excretion of water-soluble P in starter, grower, and finisher pigs by 42, 34, and 30%, respectively.


Subject(s)
6-Phytase/pharmacology , Phosphorus/urine , Swine/metabolism , Animals , Diet , Random Allocation , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...