Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Chemphyschem ; 19(7): 848-856, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29274195

ABSTRACT

Wide-line 1 H NMR measurements were extended and all results were reinterpreted in a new thermodynamics-based approach to study aqueous solutions of thymosin-ß4 (Tß4 ), stabilin C-terminal domain (CTD) and their 1:1 complex. The energy distributions of the potential barriers, which control motion of protein-bound water molecules, were determined. Heterogeneous and homogeneous regions were found at the protein-water interface. The measure of heterogeneity gives a quantitative value for the portion of disordered parts in the protein. Ordered structural elements were found extending up to 20 % of the whole proteins. About 40 % of the binding sites of free Tß4 become involved in bonds holding the complex together. The complex has the most heterogeneous solvent accessible surface (SAS) in terms of protein-water interactions. The complex is more disordered than Tß4 or stabilin CTD. The greater SAS area of the complex is interpreted as a clear sign of its open structure.


Subject(s)
Cell Adhesion Molecules, Neuronal/chemistry , Peptide Fragments/chemistry , Thymosin/chemistry , Water/chemistry , Humans , Motion , Protein Structure, Quaternary , Proton Magnetic Resonance Spectroscopy , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...