Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(3): 541-556.e15, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38244542

ABSTRACT

How is time encoded into organ growth and morphogenesis? We address this question by investigating heteroblasty, where leaf development and form are modified with progressing plant age. By combining morphometric analyses, fate-mapping through live-imaging, computational analyses, and genetics, we identify age-dependent changes in cell-cycle-associated growth and histogenesis that underpin leaf heteroblasty. We show that in juvenile leaves, cell proliferation competence is rapidly released in a "proliferation burst" coupled with fast growth, whereas in adult leaves, proliferative growth is sustained for longer and at a slower rate. These effects are mediated by the SPL9 transcription factor in response to inputs from both shoot age and individual leaf maturation along the proximodistal axis. SPL9 acts by activating CyclinD3 family genes, which are sufficient to bypass the requirement for SPL9 in the control of leaf shape and in heteroblastic reprogramming of cellular growth. In conclusion, we have identified a mechanism that bridges across cell, tissue, and whole-organism scales by linking cell-cycle-associated growth control to age-dependent changes in organ geometry.


Subject(s)
Plant Leaves , Transcription Factors , Transcription Factors/metabolism , Cell Proliferation , Cell Division , Morphogenesis , Gene Expression Regulation, Plant
2.
Cell ; 177(6): 1405-1418.e17, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31130379

ABSTRACT

How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.


Subject(s)
Arabidopsis/growth & development , Cardamine/growth & development , Plant Leaves/growth & development , Arabidopsis/genetics , Cardamine/genetics , Cell Lineage/genetics , Computational Biology/methods , Gene Expression Regulation, Plant/genetics , Plant Leaves/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...