Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 13(2): 3, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23378132

ABSTRACT

The perceived orientation of objects, gravity, and the body are biased to the left. Whether this leftward bias is attributable to biases in sensing or processing vestibular, visual, and body sense cues has never been assessed directly. The orientation in which characters are most easily recognized--the perceived upright (PU)--can be well predicted from a weighted vector sum of these sensory cues. A simple form of this model assumes that the directions of the contributing inputs are coded accurately and as a consequence participants tilted left- or right-side-down relative to gravity should exhibit mirror symmetric patterns of responses. If a left/right asymmetry were present then varying these sensory cues could be used to assess in which sensory modality or modalities a PU bias may have arisen. Participants completed the Oriented Character Recognition Test (OCHART) while manipulating body posture and visual orientation cues relative to gravity. The response patterns showed systematic differences depending on which side they were tilted. An asymmetry of the PU was found to be best modeled by adding a leftward bias of 5.6° to the perceived orientation of the body relative to its actual orientation relative to the head. The asymmetry in the effect of body orientation is reminiscent of the body-defined left-leaning asymmetry in the perceived direction of light coming from above and reports that people tend to adopt a right-leaning posture.


Subject(s)
Cues , Orientation/physiology , Posture/physiology , Space Perception/physiology , Adult , Female , Gravitation , Humans , Male , Memory , Photic Stimulation/methods , Young Adult
2.
Seeing Perceiving ; 24(1): 53-64, 2011.
Article in English | MEDLINE | ID: mdl-21406155

ABSTRACT

The perceived direction of up depends on both gravity and visual cues to orientation. Static visual cues to orientation have been shown to be less effective in influencing the perception of upright (PU) under microgravity conditions than they are on earth (Dyde et al., 2009). Here we introduce dynamic orientation cues into the visual background to ascertain whether they might increase the effectiveness of visual cues in defining the PU under different gravity conditions. Brief periods of microgravity and hypergravity were created using parabolic flight. Observers viewed a polarized, natural scene presented at various orientations on a laptop viewed through a hood which occluded all other visual cues. The visual background was either an animated video clip in which actors moved along the visual ground plane or an individual static frame taken from the same clip. We measured the perceptual upright using the oriented character recognition test (OCHART). Dynamic visual cues significantly enhance the effectiveness of vision in determining the perceptual upright under normal gravity conditions. Strong trends were found for dynamic visual cues to produce an increase in the visual effect under both microgravity and hypergravity conditions.


Subject(s)
Cues , Gravitation , Orientation/physiology , Posture/physiology , Space Perception/physiology , Adult , Female , Humans , Male , Middle Aged , Young Adult
3.
Exp Brain Res ; 194(4): 647-60, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19305984

ABSTRACT

We measured the effect of the orientation of the visual background on the perceptual upright (PU) under different levels of gravity. Brief periods of micro- and hypergravity conditions were created using two series of parabolic flights. Control measures were taken in the laboratory under normal gravity with subjects upright, right side down and supine. Participants viewed a polarized, natural scene presented at various orientations on a laptop viewed through a hood which occluded all other visual cues. Superimposed on the screen was a character the identity of which depended on its orientation. The orientations at which the character was maximally ambiguous were measured and the perceptual upright was defined as half way between these orientations. The visual background affected the orientation of the PU less when in microgravity than when upright in normal gravity and more when supine than when upright in normal gravity. A weighted vector sum model was used to quantify the relative influence of the orientations of gravity, vision and the body in determining the perceptual upright.


Subject(s)
Gravity, Altered , Orientation , Proprioception , Adult , Analysis of Variance , Cues , Female , Humans , Male , Middle Aged , Perception , Photic Stimulation , Posture , Psychophysics , Young Adult
4.
Perception ; 33(12): 1453-61, 2004.
Article in English | MEDLINE | ID: mdl-15729912

ABSTRACT

The perception of shading-defined form results from an interaction between shading cues and the frames of reference within which those cues are interpreted. In the absence of a clear source of illumination, the definition of 'up' becomes critical to deducing the perceived shape from a particular pattern of shading. In our experiments, twelve subjects adjusted the orientation of a planar disc painted with a linear luminance gradient from one side to the other, until the disc appeared maximally convex-that is, until the luminance gradient induced the maximum perception of a three-dimensional shape. The vision, gravity, and body-orientation cues were altered relative to each other. Visual cues were manipulated by the York Tilted Room facility, and body cues were altered by simply lying on one side. The orientation of the disc that appeared maximally convex varied in a systematic fashion with these manipulations. We present a model in which the direction of perceptual 'up' is determined from the sum of three weighted vectors corresponding to the vision, gravity, and body-orientation cues. The model predicts the perceived direction of 'up', contributes to our understanding of how shape-from-shading is deduced, and also predicts the confidence with which the 'up' direction is perceived.


Subject(s)
Form Perception , Gravitation , Lighting , Orientation , Adult , Contrast Sensitivity , Cues , Depth Perception , Female , Humans , Male , Middle Aged , Photic Stimulation/methods , Psychophysics
5.
Perception ; 31(12): 1477-90, 2002.
Article in English | MEDLINE | ID: mdl-12916672

ABSTRACT

A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.


Subject(s)
Orientation/physiology , Posture/physiology , Visual Perception/physiology , Adult , Female , Gravitation , Humans , Illusions/psychology , Male , Rotation , Supine Position
SELECTION OF CITATIONS
SEARCH DETAIL
...