Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(8): 087701, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36053708

ABSTRACT

Ohm's law describes the proportionality of the current density and electric field. In solid-state conductors, Ohm's law emerges due to electron scattering processes that relax the electrical current. Here, we use nitrogen-vacancy center magnetometry to directly image the local breakdown of Ohm's law in a narrow constriction fabricated in a high mobility graphene monolayer. Ohmic flow is visible at room temperature as current concentration on the constriction edges, with flow profiles entirely determined by sample geometry. However, as the temperature is lowered below 200 K, the current concentrates near the constriction center. The change in the flow pattern is consistent with a crossover from diffusive to viscous electron transport dominated by electron-electron scattering processes that do not relax current.

2.
Nano Lett ; 18(2): 980-986, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29271208

ABSTRACT

Magnetic skyrmions as swirling spin textures with a nontrivial topology have potential applications as magnetic memory and storage devices. Since the initial discovery of skyrmions in non-centrosymmetric B20 materials, the recent effort has focused on exploring room-temperature skyrmions in heavy metal and ferromagnetic heterostructures, a material platform compatible with existing spintronic manufacturing technology. Here, we report the surprising observation that a room-temperature skyrmion phase can be stabilized in an entirely different class of systems based on antiferromagnetic (AFM) metal and ferromagnetic (FM) metal IrMn/CoFeB heterostructures. There are a number of distinct advantages of exploring skyrmions in such heterostructures including zero-field stabilization, tunable antiferromagnetic order, and sizable spin-orbit torque (SOT) for energy-efficient current manipulation. Through direct spatial imaging of individual skyrmions, quantitative evaluation of the interfacial Dzyaloshinskii-Moriya interaction, and demonstration of current-driven skyrmion motion, our findings firmly establish the AFM/FM heterostructures as a promising material platform for exploring skyrmion physics and device applications.

3.
Nat Nanotechnol ; 11(8): 700-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27136130

ABSTRACT

High-spatial-resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radically new sensor technology. The nitrogen-vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor on the basis of its atomic size and quantum-limited sensing capabilities. It has remained an outstanding challenge to implement the NV centre as a nanoscale scanning magnetic probe at cryogenic temperatures, however, where many solid-state systems exhibit non-trivial magnetic order. Here, we present NV magnetic imaging down to 6 K with 3 µT Hz(-1/2) field sensitivity, and use the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with critical temperature Tc = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures will enable future studies of previously inaccessible nanoscale magnetism in condensed-matter systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...