Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(2): e2504, 2022 03.
Article in English | MEDLINE | ID: mdl-34866273

ABSTRACT

Range-wide species conservation efforts are facilitated by spatially explicit estimates of habitat suitability. However, species-environment relationships often vary geographically and models assuming geographically constant relationships may result in misleading inferences. We present the first range-wide habitat suitability model (HSM) for the federally threatened eastern indigo snake (Drymarchon couperi) as a case study illustrating an approach to account for known latitudinal variation in habitat associations. Specifically, we modeled habitat suitability using interactive relationships between minimum winter temperature and several a priori environmental covariates and compared our results to those from models assuming geographically constant relationships. We found that multi-scale models including interactive effects with winter temperature outperformed single-scale models and models not including interactive effects with winter temperature. Our top-ranked model had suitable range-wide predictive performance and identified numerous large (i.e., ≥1000 ha) potential habitat patches throughout the indigo snake range. Predictive performance was greatest in southern Georgia and northern Florida likely reflecting more restrictive indigo snake habitat associations in these regions. This study illustrates how modeling interactive effects between temperature and environmental covariates can improve the performance of HSMs across geographically varying environmental gradients.


Subject(s)
Ecosystem , Florida , Seasons
2.
Mol Ecol ; 30(14): 3422-3438, 2021 07.
Article in English | MEDLINE | ID: mdl-33978288

ABSTRACT

Landscape features can strongly influence gene flow and the strength and direction of these effects may vary across spatial scales. However, few studies have evaluated methodological approaches for selecting spatial scales in landscape genetics analyses, in part because of computational challenges associated with optimizing landscape resistance surfaces (LRS). We used the federally threatened eastern indigo snake (Drymarchon couperi) in central Florida as a case study with which to compare the importance of landscape features and their scales of effect in influencing gene flow. We used genetic algorithms (ResistanceGA) to empirically optimize LRS using categorical land cover surfaces, multiscale resource selection surfaces (RSS), and four combinations of landscape covariates measured at multiple spatial scales (multisurface multiscale LRS). We compared LRS where scale was selected using pseudo- and full optimization. Multisurface multiscale LRS received more empirical support than LRS optimized from categorical land cover surfaces or RSS. Multiscale LRS with scale selected using full optimization generally outperformed those with scale selected using pseudo-optimization. Multiscale LRS with large spatial scales (1200-1800 m) received the most empirical support. Our results highlight the importance of considering landscape features across multiple spatial scales in landscape genetic analyses, particularly broad scales relative to species movement potential. Different effects of scale on home range-level movements and dispersal could explain weak associations between habitat suitability and gene flow in other studies. Our results also demonstrate the importance of large tracts of undeveloped upland habitat with heterogenous vegetation communities and low urbanization for promoting indigo snake connectivity.


Subject(s)
Ecosystem , Gene Flow , Animals , Florida , Snakes/genetics , Urbanization
3.
PLoS One ; 11(8): e0160033, 2016.
Article in English | MEDLINE | ID: mdl-27490346

ABSTRACT

Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed.


Subject(s)
Colubridae/physiology , Sexual Behavior/physiology , Animals , Ecosystem , Female , Florida , Homing Behavior , Male , Seasons , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL
...