Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; 33(5): e12972, 2021 05.
Article in English | MEDLINE | ID: mdl-33896057

ABSTRACT

Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.


Subject(s)
Hypothalamus/metabolism , Ovarian Follicle/metabolism , Pituitary Gland/metabolism , Pro-Opiomelanocortin/metabolism , Stress, Psychological/metabolism , Animals , Corpus Luteum/metabolism , Corticosterone/metabolism , Female , Growth Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Luteinizing Hormone/metabolism , Male , Mice , Neurons/metabolism , Pituitary-Adrenal System/metabolism , Prolactin/metabolism , Thyrotropin/metabolism
2.
Eur J Hum Genet ; 29(7): 1110-1120, 2021 07.
Article in English | MEDLINE | ID: mdl-33654309

ABSTRACT

The MCM2-7 helicase is a heterohexameric complex with essential roles as part of both the pre-replication and pre-initiation complexes in the early stages of DNA replication. Meier-Gorlin syndrome, a rare primordial dwarfism, is strongly associated with disruption to the pre-replication complex, including a single case described with variants in MCM5. Conversely, a biallelic pathogenic variant in MCM4 underlies immune deficiency with growth retardation, features also seen in individuals with pathogenic variants in other pre-initiation complex encoding genes such as GINS1, MCM10, and POLE. Through exome and chromium genome sequencing, supported by functional studies, we identify biallelic pathogenic variants in MCM7 and a strong candidate biallelic pathogenic variant in MCM3. We confirm variants in MCM7 are deleterious and through interfering with MCM complex formation, impact efficiency of S phase progression. The associated phenotypes are striking; one patient has typical Meier-Gorlin syndrome, whereas the second case has a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. We provide further insight into the developmental complexity of disrupted MCM function, highlighted by two patients with a similar variant profile in MCM7 but disparate clinical features. Our results build on other genetic findings linked to disruption of the pre-replication and pre-initiation complexes, and the replisome, and expand the complex clinical genetics landscape emerging due to disruption of DNA replication.


Subject(s)
Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/genetics , Congenital Microtia/diagnosis , Congenital Microtia/genetics , Growth Disorders/diagnosis , Growth Disorders/genetics , Lipodystrophy/diagnosis , Lipodystrophy/genetics , Micrognathism/diagnosis , Micrognathism/genetics , Minichromosome Maintenance Complex Component 3/genetics , Minichromosome Maintenance Complex Component 7/genetics , Patella/abnormalities , Adolescent , Alleles , Amino Acid Sequence , Cell Cycle/genetics , Child , Child, Preschool , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Infant , Male , Minichromosome Maintenance Complex Component 3/chemistry , Minichromosome Maintenance Complex Component 7/chemistry , Models, Molecular , New Zealand , Phenotype , Protein Conformation
3.
J Neurochem ; 139(6): 1138-1150, 2016 12.
Article in English | MEDLINE | ID: mdl-27770433

ABSTRACT

The pro-inflammatory cytokines, tumor necrosis factor-α, and interleukin-1ß/α modulate catecholamine secretion, and long-term gene regulation, in chromaffin cells of the adrenal medulla. Since interleukin-6 (IL6) also plays a key integrative role during inflammation, we have examined its ability to affect both tyrosine hydroxylase activity and adrenomedullary gene transcription in cultured bovine chromaffin cells. IL6 caused acute tyrosine/threonine phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and serine/tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3). Consistent with ERK1/2 activation, IL6 rapidly increased tyrosine hydroxylase phosphorylation (serine-31) and activity, as well as up-regulated genes, encoding secreted proteins including galanin, vasoactive intestinal peptide, gastrin-releasing peptide, and parathyroid hormone-like hormone. The effects of IL6 on the entire bovine chromaffin cell transcriptome were compared to those generated by G-protein-coupled receptor (GPCR) agonists (histamine and pituitary adenylate cyclase-activating polypeptide) and the cytokine receptor agonists (interferon-α and tumor necrosis factor-α). Of 90 genes up-regulated by IL6, only 16 are known targets of IL6 in the immune system. Those remaining likely represent a combination of novel IL6/STAT3 targets, ERK1/2 targets and, potentially, IL6-dependent genes activated by IL6-induced transcription factors, such as hypoxia-inducible factor 1α. Notably, genes induced by IL6 include both neuroendocrine-specific genes activated by GPCR agonists, and transcripts also activated by the cytokines. These results suggest an integrative role for IL6 in the fine-tuning of the chromaffin cell response to a wide range of physiological and paraphysiological stressors, particularly when immune and endocrine stimuli converge.


Subject(s)
Adrenal Medulla/metabolism , Chromaffin Cells/metabolism , Interleukin-6/physiology , MAP Kinase Signaling System/physiology , Adrenal Medulla/cytology , Adrenal Medulla/drug effects , Animals , Cattle , Cells, Cultured , Chromaffin Cells/drug effects , Interleukin-6/pharmacology , MAP Kinase Signaling System/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...