Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 7357, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191779

ABSTRACT

Image-guided percutaneous cryoablation is an established minimally invasive oncologic treatment. We hypothesized that cryoablation may modify the immune microenvironment through direct modulation of the tumor, thereby generating an anti-tumor response in tumors refractory to immune checkpoint inhibition (ICI). In this non-randomized phase II single-center study (NCT03290677), subjects with unresectable melanoma progressing on ICI underwent cryoablation of an enlarging metastasis, and ICI was continued for a minimum of two additional cycles. The primary endpoints were safety, feasibility and tumor response in non-ablated lesions. From May 2018 through July 2020, 17 patients were treated on study. The study met its primary endpoints with the combination strategy found to be safe and feasible with an objective response rate of 23.5% and disease control rate of 41% (4 partial response, 3 stable disease). Our data support further study of this synergistic therapeutic approach.


Subject(s)
Cryosurgery , Immune Checkpoint Inhibitors , Melanoma , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/surgery , Melanoma/immunology , Immune Checkpoint Inhibitors/therapeutic use , Cryosurgery/methods , Female , Male , Middle Aged , Aged , Disease Progression , Adult , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/immunology , Skin Neoplasms/surgery , Tumor Microenvironment/immunology , Neoplasm Metastasis , Treatment Outcome , Combined Modality Therapy , Aged, 80 and over
2.
Anesth Analg ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116017

ABSTRACT

Substance-use disorders (SUDs) represent a major public health concern. The increased prevalence of SUDs within the general population has led to more patients with SUD being admitted to intensive care units (ICUs) for an SUD-related condition or with SUD as a relevant comorbidity. Multiprofessional providers of critical care should be familiar with these disorders and their impact on critical illness. Management of critically ill patients with SUDs is complicated by both acute exposures leading to intoxication, the associated withdrawal syndrome(s), and the physiologic changes associated with chronic use that can cause, predispose patients to, and worsen the severity of other medical conditions. This article reviews the epidemiology of substance use in critically ill patients, discusses the identification and treatment of common intoxication and withdrawal syndromes, and provides evidence-based recommendations for the management of patients exposed to chronic use.

3.
Science ; 385(6705): eadl6173, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991060

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.


Subject(s)
Immune Evasion , Immunity, Innate , Isocitrate Dehydrogenase , Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , DNA/metabolism , DNA Demethylation , DNA Methylation , DNA Transposable Elements , Epigenesis, Genetic , Glutarates/metabolism , Immunity, Innate/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nucleotidyltransferases/genetics , Tumor Escape , Immune Evasion/genetics
4.
Sci Adv ; 10(20): eadj5428, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748789

ABSTRACT

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.


Subject(s)
Immunity, Innate , N-Myc Proto-Oncogene Protein , Ovarian Neoplasms , Signal Transduction , Female , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Gene Expression Regulation, Neoplastic , Immunity, Innate/genetics , Interferon Type I/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neoplasm Grading , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism
5.
Clin Cancer Res ; 30(15): 3243-3258, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38767611

ABSTRACT

PURPOSE: Uveal melanoma (UM) is the most common intraocular malignant tumor. Despite successful treatment of the primary tumor, about 50% of patients will recur with systemic diseases for which there are no effective treatment strategies. Here we investigated the preclinical efficacy of a chimeric antigen receptor (CAR) T-cell-based immunotherapy targeting B7-H3. EXPERIMENTAL DESIGN: B7-H3 expression on primary and metastatic human UM samples and cell lines was assessed by RNA sequencing, flow cytometry, and immunohistochemistry. Antitumor activity of CAR T cells targeting B7-H3 was tested in vitro with UM cell lines, patient-derived organotypic tumor spheroids from patients with metastatic UM, and in immunodeficient and humanized murine models. RESULTS: B7-H3 is expressed at high levels in >95% UM tumor cells in vitro and in vivo. We generated a B7-H3 CAR with an inducible caspase-9 (iCas9) suicide gene controlled by the chemical inducer of dimerization AP1903, which effectively kills UM cells in vitro and eradicates UM liver metastases in murine models. Delivery of iCas9.B7-H3 CAR T cells in experimental models of UM liver metastases demonstrates a durable antitumor response, even upon tumor rechallenge or in the presence of a significant metastatic disease burden. We demonstrate effective iCas9.B7-H3 CAR T-cell elimination in vitro and in vivo in response to AP1903. Our studies demonstrate more effective tumor suppression with iCas9.B7-H3 CAR T cells as compared to a B7-H3-targeted humanized monoclonal antibody. CONCLUSIONS: These studies support a phase I clinical trial with iCas9.B7-H3 CAR T cells to treat patients with metastatic UM.


Subject(s)
B7 Antigens , Caspase 9 , Genes, Transgenic, Suicide , Immunotherapy, Adoptive , Liver Neoplasms , Melanoma , Receptors, Chimeric Antigen , Uveal Neoplasms , Xenograft Model Antitumor Assays , Humans , Uveal Neoplasms/therapy , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/immunology , Animals , B7 Antigens/genetics , Mice , Melanoma/therapy , Melanoma/immunology , Melanoma/genetics , Melanoma/pathology , Melanoma/secondary , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Caspase 9/genetics , Caspase 9/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Trends Cancer ; 10(6): 531-540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519366

ABSTRACT

TANK-binding kinase 1 (TBK1) is a versatile serine/threonine protein kinase with established roles in innate immunity, metabolism, autophagy, cell death, and inflammation. While best known for its role in regulating innate immunity, TBK1 has emerged as a cancer cell-intrinsic immune evasion gene by virtue of its role in modulating cellular responses to inflammatory signals emanating from the immune system. Beyond its effect on cancer cells, TBK1 appears to regulate lymphoid and myeloid cells in the tumor immune microenvironment. In this review, we detail recent advances in our understanding of the tumor-intrinsic and -extrinsic roles and regulation of TBK1 in tumor immunity.


Subject(s)
Immunity, Innate , Neoplasms , Protein Serine-Threonine Kinases , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Animals , Tumor Escape/genetics , Signal Transduction/immunology , Autophagy/immunology , Autophagy/genetics
7.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38393682

ABSTRACT

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Subject(s)
CD3 Complex , Endopeptidases , GPI-Linked Proteins , Immunotherapy, Adoptive , Mesothelin , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Membrane Proteins/immunology , Membrane Proteins/metabolism , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Adenocarcinoma/pathology
8.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38405985

ABSTRACT

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

9.
J Immunother Precis Oncol ; 6(2): 61-73, 2023 May.
Article in English | MEDLINE | ID: mdl-37214210

ABSTRACT

Introduction: Regulatory T cells (Tregs) play a critical role in the maintenance of immune homeostasis but also protect tumors from immune-mediated growth control or rejection and pose a significant barrier to effective immunotherapy. Inhibition of MALT1 paracaspase activity can selectively reprogram immune-suppressive Tregs in the tumor microenvironment to adopt a proinflammatory fragile state, which offers an opportunity to impede tumor growth and enhance the efficacy of immune checkpoint therapy (ICT). Methods: We performed preclinical studies with the orally available allosteric MALT1 inhibitor (S)-mepazine as a single-agent and in combination with anti-programmed cell death protein 1 (PD-1) ICT to investigate its pharmacokinetic properties and antitumor effects in several murine tumor models as well as patient-derived organotypic tumor spheroids (PDOTS). Results: (S)-mepazine demonstrated significant antitumor effects and was synergistic with anti-PD-1 therapy in vivo and ex vivo but did not affect circulating Treg frequencies in healthy rats at effective doses. Pharmacokinetic profiling revealed favorable drug accumulation in tumors to concentrations that effectively blocked MALT1 activity, potentially explaining preferential effects on tumor-infiltrating over systemic Tregs. Conclusions: The MALT1 inhibitor (S)-mepazine showed single-agent anticancer activity and presents a promising opportunity for combination with PD-1 pathway-targeted ICT. Activity in syngeneic tumor models and human PDOTS was likely mediated by induction of tumor-associated Treg fragility. This translational study supports ongoing clinical investigations (ClinicalTrials.gov Identifier: NCT04859777) of MPT-0118, (S)-mepazine succinate, in patients with advanced or metastatic treatment-refractory solid tumors.

10.
Cells ; 11(22)2022 11 08.
Article in English | MEDLINE | ID: mdl-36428963

ABSTRACT

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), two clinically relevant targets for the immunotherapy of cancer, are negative regulators of T-cell activation and migration. Optimizing the therapeutic response to CTLA-4 and PD-1 blockade calls for a more comprehensive insight into the coordinated function of these immune regulators. Mathematical modeling can be used to elucidate nonlinear tumor-immune interactions and highlight the underlying mechanisms to tackle the problem. Here, we investigated and statistically characterized the dynamics of T-cell migration as a measure of the functional response to these pathways. We used a previously developed three-dimensional organotypic culture of patient-derived tumor spheroids treated with anti-CTLA-4 and anti-PD-1 antibodies for this purpose. Experiment-based dynamical modeling revealed the delayed kinetics of PD-1 activation, which originates from the distinct characteristics of PD-1 and CTLA-4 regulation, and followed through with the modification of their contributions to immune modulation. The simulation results show good agreement with the tumor cell reduction and active immune cell count in each experiment. Our findings demonstrate that while PD-1 activation provokes a more exhaustive intracellular cascade within a mature tumor environment, the time-delayed kinetics of PD-1 activation outweighs its preeminence at the individual cell level and consequently confers a functional dominance to the CTLA-4 checkpoint. The proposed model explains the distinct immunostimulatory pattern of PD-1 and CTLA-4 blockade based on mechanisms involved in the regulation of their expression and may be useful for planning effective treatment schemes targeting PD-1 and CTLA-4 functions.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , CTLA-4 Antigen/metabolism , T-Lymphocytes/metabolism , Immunotherapy/methods , Abatacept , Neoplasms/pathology
11.
Cancer Discov ; 12(3): 812-835, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34848557

ABSTRACT

Isocitrate dehydrogenase 1 mutations (mIDH1) are common in cholangiocarcinoma. (R)-2-hydroxyglutarate generated by the mIDH1 enzyme inhibits multiple α-ketoglutarate-dependent enzymes, altering epigenetics and metabolism. Here, by developing mIDH1-driven genetically engineered mouse models, we show that mIDH1 supports cholangiocarcinoma tumor maintenance through an immunoevasion program centered on dual (R)-2-hydroxyglutarate-mediated mechanisms: suppression of CD8+ T-cell activity and tumor cell-autonomous inactivation of TET2 DNA demethylase. Pharmacologic mIDH1 inhibition stimulates CD8+ T-cell recruitment and interferon γ (IFNγ) expression and promotes TET2-dependent induction of IFNγ response genes in tumor cells. CD8+ T-cell depletion or tumor cell-specific ablation of TET2 or IFNγ receptor 1 causes treatment resistance. Whereas immune-checkpoint activation limits mIDH1 inhibitor efficacy, CTLA4 blockade overcomes immunosuppression, providing therapeutic synergy. The findings in this mouse model of cholangiocarcinoma demonstrate that immune function and the IFNγ-TET2 axis are essential for response to mIDH1 inhibition and suggest a novel strategy for potentiating efficacy. SIGNIFICANCE: Mutant IDH1 inhibition stimulates cytotoxic T-cell function and derepression of the DNA demethylating enzyme TET2, which is required for tumor cells to respond to IFNγ. The discovery of mechanisms of treatment efficacy and the identification of synergy by combined CTLA4 blockade provide the foundation for new therapeutic strategies. See related commentary by Zhu and Kwong, p. 604. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Dioxygenases , Animals , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , CTLA-4 Antigen/genetics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Humans , Interferon-gamma/genetics , Isocitrate Dehydrogenase , Mice , Mutation
12.
Cancers (Basel) ; 13(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34885161

ABSTRACT

Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor-immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor-immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.

13.
Commun Biol ; 4(1): 122, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504936

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is one of the most immunologically distinct tumor types due to high response rate to immunotherapies, despite low tumor mutational burden. To characterize the tumor immune microenvironment of ccRCC, we applied single-cell-RNA sequencing (SCRS) along with T-cell-receptor (TCR) sequencing to map the transcriptomic heterogeneity of 25,688 individual CD45+ lymphoid and myeloid cells in matched tumor and blood from three patients with ccRCC. We also included 11,367 immune cells from four other individuals derived from the kidney and peripheral blood to facilitate the identification and assessment of ccRCC-specific differences. There is an overall increase in CD8+ T-cell and macrophage populations in tumor-infiltrated immune cells compared to normal renal tissue. We further demonstrate the divergent cell transcriptional states for tumor-infiltrating CD8+ T cells and identify a MKI67 + proliferative subpopulation being a potential culprit for the progression of ccRCC. Using the SCRS gene expression, we found preferential prediction of clinical outcomes and pathological diseases by subcluster assignment. With further characterization and functional validation, our findings may reveal certain subpopulations of immune cells amenable to therapeutic intervention.


Subject(s)
Carcinoma, Renal Cell , Genomics/methods , Kidney Neoplasms , Single-Cell Analysis/methods , Tumor Microenvironment/immunology , Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Case-Control Studies , Gene Expression Regulation, Neoplastic/immunology , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Transcriptome , Tumor Microenvironment/genetics
14.
J Invest Dermatol ; 141(1): 23-31, 2021 01.
Article in English | MEDLINE | ID: mdl-32268150

ABSTRACT

The melanoma field has seen an unprecedented set of clinical advances over the past decade. Therapeutic efficacy for advanced or metastatic melanoma went from being one of the most poorly responsive to one of the more responsive. Perhaps most strikingly, the advances that transformed management of the disease are based upon modern mechanism-based therapeutic strategies. The targeted approaches that primarily suppress the BRAF oncoprotein pathway have a high predictability of efficacy although less optimal depth or durability of response. Immunotherapy is primarily based on blockade of one or two immune checkpoints and has a lower predictability of response but higher fractions of durable remissions. This article reviews the clinical progress in management of advanced melanoma and also discusses the impact of the same therapies on earlier stage disease, where the agents have shown significant promise in treating resectable but high-risk clinical scenarios. Collectively, the progress in melanoma therapeutics has transformed the standard of care for patients, informed new approaches that are increasingly utilized for treatment of other malignancies, and suggest novel strategies to further boost efficacy for the many patients not yet receiving optimal benefit from these approaches.


Subject(s)
Immunologic Factors/therapeutic use , Immunotherapy/methods , Melanoma/therapy , Molecular Targeted Therapy/methods , Skin Neoplasms/therapy , Humans , Retrospective Studies
15.
J Clin Invest ; 131(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33151910

ABSTRACT

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.


Subject(s)
Immunotherapy , Neoplasm Proteins , Neoplasms, Experimental , Programmed Cell Death 1 Receptor , RNA-Seq , Single-Cell Analysis , Spheroids, Cellular , Animals , Cell Line, Tumor , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Spheroids, Cellular/immunology , Spheroids, Cellular/pathology
16.
Expert Opin Ther Targets ; 24(11): 1065-1078, 2020 11.
Article in English | MEDLINE | ID: mdl-32962465

ABSTRACT

INTRODUCTION: TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED: This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION: TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.


Subject(s)
Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Humans , Molecular Targeted Therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
18.
Am J Clin Dermatol ; 20(1): 41-54, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30259383

ABSTRACT

The recent development of effective immune checkpoint inhibition (ICI), first demonstrated in melanoma, has revolutionized cancer treatment. Monoclonal antibodies blocking the immune checkpoints cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 receptor (PD-1) have shown substantial clinical benefit in a subset of patients across tumor types and in both the metastatic and adjuvant settings. In this article, we review the interaction between the immune system and solid tumors, and describe modes of immune response failure and the physiologic role of immune checkpoints. We also review the known mechanisms of immune checkpoint inhibitors, focusing on US FDA-approved agents targeting CTLA-4 and PD-1. Within this framework, we classify hypothesized tumor intrinsic and extrinsic predictive markers for response and resistance to ICI, and map them to their putative underlying biological mechanism. Finally, we outline future directions in ICI, including the development of new therapeutic targets, rational combination therapies, integrated predictive models for individual patients to optimize therapy, and expansion into different disease types.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/genetics , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/immunology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Drug Resistance, Neoplasm/immunology , Humans , Immunotherapy/methods , Melanoma/immunology , Mutation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/immunology , Treatment Outcome , Tumor Escape/drug effects , Tumor Escape/genetics
19.
Cell ; 175(4): 984-997.e24, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388455

ABSTRACT

Immune checkpoint inhibitors (ICIs) produce durable responses in some melanoma patients, but many patients derive no clinical benefit, and the molecular underpinnings of such resistance remain elusive. Here, we leveraged single-cell RNA sequencing (scRNA-seq) from 33 melanoma tumors and computational analyses to interrogate malignant cell states that promote immune evasion. We identified a resistance program expressed by malignant cells that is associated with T cell exclusion and immune evasion. The program is expressed prior to immunotherapy, characterizes cold niches in situ, and predicts clinical responses to anti-PD-1 therapy in an independent cohort of 112 melanoma patients. CDK4/6-inhibition represses this program in individual malignant cells, induces senescence, and reduces melanoma tumor outgrowth in mouse models in vivo when given in combination with immunotherapy. Our study provides a high-resolution landscape of ICI-resistant cell states, identifies clinically predictive signatures, and suggests new therapeutic strategies to overcome immunotherapy resistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Melanoma/immunology , Protein Kinase Inhibitors/therapeutic use , T-Lymphocytes/immunology , Tumor Escape , Aged , Aged, 80 and over , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Immunotherapy/methods , Male , Melanoma/drug therapy , Melanoma/therapy , Mice , Mice, Inbred C57BL , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology
20.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388456

ABSTRACT

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Melanoma/immunology , Transcriptome , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antigens, CD/immunology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Apyrase/antagonists & inhibitors , Apyrase/immunology , Cell Line, Tumor , Humans , Leukocyte Common Antigens/antagonists & inhibitors , Leukocyte Common Antigens/immunology , Melanoma/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T Cell Transcription Factor 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL