Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biofilm ; 5: 100123, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37138646

ABSTRACT

The global clinical and socioeconomic impact of chronic wounds is substantial. The main difficulty that clinicians face during the treatment of chronic wounds is the risk of infection at the wound site. Infected wounds arise from an accumulation of microbial aggregates in the wound bed, leading to the formation of polymicrobial biofilms that can be largely resistant to antibiotic therapy. Therefore, it is essential for studies to identify novel therapeutics to alleviate biofilm infections. One innovative technique is the use of cold atmospheric plasma (CAP) which has been shown to possess promising antimicrobial and immunomodulatory properties. Here, different clinically relevant biofilm models will be treated with cold atmospheric plasma to assess its efficacy and killing effects. Biofilm viability was assessed using live dead qPCR, and morphological changes associated with CAP evaluated using scanning electron microscopy (SEM). Results indicated that CAP was effective against Candida albicans and Pseudomonas aeruginosa, both as mono-species biofilms and when grown in a triadic model system. CAP also significantly reduced viability in the nosocomial pathogen, Candida auris. Staphylococcus aureus Newman exhibited a level of tolerance to CAP therapy, both when grown alone or in the triadic model when grown alongside C. albicans and P. aeruginosa. However, this degree of tolerance exhibited by S. aureus was strain dependent. At a microscopic level, biofilm treatment led to subtle changes in morphology in the susceptible biofilms, with evidence of cellular deflation and shrinkage. Taken together, these results indicate a promising application of direct CAP therapy in combatting wound and skin-related biofilm infections, although biofilm composition may affect the treatment efficacy.

2.
ACS Appl Mater Interfaces ; 15(16): 19989-19996, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37040527

ABSTRACT

We present the concept of a versatile drug-loaded composite hydrogel that can be activated using an argon-based cold atmospheric plasma (CAP) jet to deliver both a drug and CAP-generated molecules, concomitantly, in a tissue target. To demonstrate this concept, we utilized the antibiotic gentamicin that is encapsulated in sodium polyacrylate (PAA) particles, which are dispersed within a poly(vinyl alcohol) (PVA) hydrogel matrix. The final product is a gentamicin-PAA-PVA composite hydrogel suitable for an on-demand triggered release using CAP. We show that by activating using CAP, we can effectively release gentamicin from the hydrogel and also eradicate the bacteria effectively, both in the planktonic state and within a biofilm. Besides gentamicin, we also successfully demonstrate the applicability of the CAP-activated composite hydrogel loaded with other antimicrobial agents such as cetrimide and silver. This concept of a composite hydrogel is potentially adaptable to a range of therapeutics (such as antimicrobials, anticancer agents, and nanoparticles) and activatable using any dielectric barrier discharge CAP device.


Subject(s)
Hydrogels , Plasma Gases , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Polyvinyl Alcohol , Gentamicins/pharmacology
3.
J Mater Chem B ; 11(17): 3958-3968, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37070387

ABSTRACT

Antimicrobial resistance is one of the greatest threats to human health. Gram-positive methicillin resistant Staphylococcus aureus (MRSA), in both its planktonic and biofilm form, is of particular concern. Herein we identify the hydrogelation properties for a series of intrinsically fluorescent, structurally related supramolecular self-associating amphiphiles and determine their efficacy against both planktonic and biofilm forms of MRSA. To further explore the potential translation of this hydrogel technology for real-world applications, the toxicity of the amphiphiles was determined against the eukaryotic multicellular model organism, Caenorhabditis elegans. Due to the intrinsic fluorescent nature of these supramolecular amphiphiles, material characterisation of their molecular self-associating properties included; comparative optical density plate reader assays, rheometry and widefield fluorescence microscopy. This enabled determination of amphiphile structure and hydrogel sol dependence on resultant fibre formation.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Humans , Microbial Sensitivity Tests , Biofilms , Caenorhabditis elegans , Plankton , Benzothiazoles
4.
Ther Deliv ; 8(7): 543-556, 2017 07.
Article in English | MEDLINE | ID: mdl-28633592

ABSTRACT

Antibiotics have been the cornerstone of clinical management of bacterial infection since their discovery in the early 20th century. However, their widespread and often indiscriminate use has now led to reports of multidrug resistance becoming globally commonplace. Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, as the self-replicating and co-evolutionary features of these predatory virions offer several advantages over conventional therapeutic agents. In particular, the use of targeted bacteriophage therapy from specialized delivery platforms has shown particular promise owing to the control of delivery location, administration conditions and dosage of the therapeutic cargo. This review presents an overview of the recent formulations and applications of such delivery vehicles as an innovative and elegant tool for bacterial control.


Subject(s)
Bacterial Infections/therapy , Drug Delivery Systems , Endopeptidases/administration & dosage , Phage Therapy , Bacteria , Bacteriophages , Humans
5.
Pediatr Infect Dis J ; 31(5): e73-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22301473

ABSTRACT

BACKGROUND: The main etiologic agent of toxic shock syndrome is the toxic shock syndrome toxin-1 (TSST-1) protein secreted by Staphylococcus aureus. Diagnosis of toxic shock syndrome is difficult and is significantly underdiagnosed in young children with burns due to the nonspecific presentation coupled with a rapid deterioration in patient condition. METHODS: The lytic and cytolytic activity of a number of clinical and laboratory TSST-1-positive strains of methicillin-susceptible S. aureus (101, 253, 279 and RN4282, respectively) and Pseudomonas aeruginosa PAO1 strain were tested in vitro using an assay designed to assess the relative exotoxin activity of bacteria using phospholipid vesicles and a T cell toxicity assay. In addition, the activity of lytic exotoxins such as δ -toxin and the secretion of nonlytic TSST-1 toxin from S. aureus was measured using the vesicle assay and Western blotting over the 20-hour growth of TSST-1-positive S. aureus culture. RESULTS: Both the vesicle and T cell assays suggest a lytic exotoxin-mediated mechanism of vesicle rupture and T cell death, with high levels of vesicle lysis and T cell toxicity. It is important to note that the clinical TSST-1-positive methicillin-susceptible S. aureus strains exhibited lytic exotoxin production as well as TSST-1 expression as confirmed by Western blot. CONCLUSION: We suggest that there is no correlation between the expression of TSST-1 and lack of exotoxin production. We also suggest that apurulence in an S. aureus-infected burn wound in a child should not be used to rule out toxic shock syndrome.


Subject(s)
Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Burns/therapy , Cell Membrane/metabolism , Enterotoxins/metabolism , Enterotoxins/toxicity , Shock, Septic/diagnosis , Shock, Septic/physiopathology , Staphylococcus aureus/isolation & purification , Superantigens/metabolism , Superantigens/toxicity , Burns/complications , Burns/epidemiology , Cell Membrane/chemistry , Child , Child, Preschool , Cytotoxicity, Immunologic , Humans , Incidence , Phospholipids/metabolism , Shock, Septic/epidemiology , Shock, Septic/microbiology , Staphylococcal Infections/diagnosis , Staphylococcal Infections/epidemiology , Staphylococcal Infections/physiopathology , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , T-Lymphocytes
6.
Bioelectrochemistry ; 70(2): 221-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17056301

ABSTRACT

Methemoglobin (bovine) is immobilized from aqueous phosphate buffer (pH 5.5) solution into thin porous TiO(2) (anatase) films at ITO electrode surfaces. Films of TiO(2) are produced in a deposition process employing 40 nm diameter TiO(2) nanoparticles suspended in dry methanol followed by calcination. The pore size in these films is sufficient for methemoglobin (ca. 6 nm diameter) to diffuse into the porous structure (over several hours) and to remain immobilized in electrochemically active form. The electrochemical reduction of methemoglobin immobilized in TiO(2) and immersed in aqueous phosphate buffer at pH 5.5 is observed in two steps with (i) a small quasi-reversible voltammetric response at -0.16 V vs. SCE (Process 1) and (ii) an irreversible reduction peak at ca. -0.5 V vs. SCE (Process 2). The irreversible response is recovered only after slow chemical re-oxidation of hemoglobin to methemoglobin. At sufficiently negative applied potential "electrochemical doping" of the TiO(2) host is observed to lead to a considerably enhanced reduction Process 1. TiO(2) can be temporarily switched from a non-conducting (irreversible electron transfer) into a conducting (reversible electron transfer) state.


Subject(s)
Biosensing Techniques/methods , Coated Materials, Biocompatible/chemistry , Electrochemistry/methods , Methemoglobin/chemistry , Nanostructures/chemistry , Titanium/chemistry , Adsorption , Electric Conductivity , Materials Testing , Membranes, Artificial , Methemoglobin/ultrastructure , Nanostructures/ultrastructure , Oxidation-Reduction , Surface Properties
7.
Langmuir ; 20(3): 891-7, 2004 Feb 03.
Article in English | MEDLINE | ID: mdl-15773120

ABSTRACT

Poly(ferrocenyldimethylsilanes), composed of alternating ferrocene and dimethylsilane units in their main chain and featuring a thiol end group, were self-assembled to redox-active monolayers on gold. Electrochemical atomic force microscopy was employed to study the morphology of the monolayers as a function of the applied potential in situ. Surface plasmon resonance spectroscopy and spectroscopic ellipsometry measurements, performed under electrochemical control, indicated thickness changes of up to 15% upon oxidizing and reducing the surface-grafted polymers. X-ray reflectivity measurements unambiguously showed a thickness increase upon electrochemical oxidation of the monolayers. The reversible thickness change was attributed to stretching of the polymer chains upon oxidation due to an increase in charge density and to the attraction of counterions and associated solvent molecules, which are released when the polymer film is reduced to its neutral state.

SELECTION OF CITATIONS
SEARCH DETAIL
...