Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS EST Air ; 1(7): 725-733, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39021671

ABSTRACT

Since the 1930s, germicidal ultraviolet (GUV) irradiation has been used indoors to prevent the transmission of airborne diseases, such as tuberculosis and measles. Recently, it has received renewed attention due to the COVID-19 pandemic. While GUV radiation has been shown to be effective in inactivating airborne bacteria and viruses, few studies on the impact of GUV on indoor air quality have been published. In this work, we evaluate the effects of GUV222 (GUV at 222 nm) on the chemistry of a common indoor volatile organic compound (VOC), limonene. We found that the production of O3 by the GUV222 lamps caused the formation of particulate matter (PM) and oxygenated volatile organic compounds (VOCs). We also found that the chemistry proceeds through the ozonolysis of limonene as well as the reaction with secondary OH, and that the presence of GUV light led to observable but small perturbations to this chemistry. Understanding the effects of GUV222 on indoor air quality is important in evaluating the safety of these devices.

2.
Indoor Air ; 31(5): 1323-1339, 2021 09.
Article in English | MEDLINE | ID: mdl-33337567

ABSTRACT

Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.


Subject(s)
Air Pollution, Indoor/analysis , Detergents , Exercise , Volatile Organic Compounds , Air Pollutants , Air Pollution, Indoor/statistics & numerical data , Chlorine , Environmental Monitoring , Humans , Mass Spectrometry , Sports , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...