Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1899, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429276

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibody types, some of which are produced by long-lived plasma cells (LLPC). Active SLE generates increased circulating antibody-secreting cells (ASC). Here, we examine the phenotypic, molecular, structural, and functional features of ASC in SLE. Relative to post-vaccination ASC in healthy controls, circulating blood ASC from patients with active SLE are enriched with newly generated mature CD19-CD138+ ASC, similar to bone marrow LLPC. ASC from patients with SLE displayed morphological features of premature maturation and a transcriptome epigenetically initiated in SLE B cells. ASC from patients with SLE exhibited elevated protein levels of CXCR4, CXCR3 and CD138, along with molecular programs that promote survival. Furthermore, they demonstrate autocrine production of APRIL and IL-10, which contributed to their prolonged in vitro survival. Our work provides insight into the mechanisms of generation, expansion, maturation and survival of SLE ASC.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Cytokines , Transcriptome , Lupus Erythematosus, Systemic/genetics , Antibody-Producing Cells
2.
Res Sq ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37461641

ABSTRACT

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibodies, some of which are present in high titers in a sustained, B cell-independent fashion consistent with their generation from long-lived plasma cells (LLPC). Active SLE displays high numbers of circulating antibody-secreting cells (ASC). Understanding the mechanisms of generation and survival of SLE ASC would contribute important insight into disease pathogenesis and novel targeted therapies. We studied the properties of SLE ASC through a systematic analysis of their phenotypic, molecular, structural, and functional features. Our results indicate that in active SLE, relative to healthy post-immunization responses, blood ASC contain a much larger fraction of newly generated mature CD19- CD138+ ASC similar to bone marrow (BM) LLPC. SLE ASC were characterized by morphological and structural features of premature maturation. Additionally, SLE ASC express high levels of CXCR4 and CD138, and molecular programs consistent with increased longevity based on pro-survival and attenuated pro-apoptotic pathways. Notably, SLE ASC demonstrate autocrine production of APRIL and IL-10 and experience prolonged in vitro survival. Combined, our findings indicate that SLE ASC are endowed with enhanced peripheral maturation, survival and BM homing potential suggesting that these features likely underlie BM expansion of autoreactive PC.

3.
Nat Commun ; 14(1): 4201, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452024

ABSTRACT

While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important. Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types. Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.


Subject(s)
COVID-19 , Neutrophils , Humans , Post-Acute COVID-19 Syndrome , Inflammation , Antiviral Agents , Disease Progression
4.
Front Med (Lausanne) ; 9: 950452, 2022.
Article in English | MEDLINE | ID: mdl-36148466

ABSTRACT

Background: B lymphocytes are dysregulated in Systemic Lupus Erythematosus (SLE) including the expansion of extrafollicular B cells in patients with SLE of African American ancestry, which is associated with disease activity and nephritis. The population of Colombia has a mixture of European, Native American, and African ancestry. It is not known if Colombian patients have the same B cell distributions described previously and if they are associated with disease activity, clinical manifestations, and environmental exposures. Objective: To characterize B cell phenotype in a group of Colombian Systemic Lupus Erythematosus patients with mixed ancestry and determine possible associations with disease activity, clinical manifestations, the DNA methylation status of the IFI44L gene and environmental exposures. Materials and methods: Forty SLE patients and 17 healthy controls were recruited. Cryopreserved peripheral B lymphocytes were analyzed by multiparameter flow cytometry, and the DNA methylation status of the gene IFI44L was evaluated in resting Naive B cells (rNAV). Results: Extrafollicular active Naive (aNAV) and Double Negative type 2, DN2 (CD27- IgD- CD21- CD11c+) B cells were expanded in severe active patients and were associated with nephritis. Patients had hypomethylation of the IFI44L gene in rNAV cells. Regarding environmental exposure, patients occupationally exposed to organic solvents had increased memory CD27+ cells (SWM). Conclusion: aNAV and DN2 extrafollicular cells showed significant clinical associations in Colombian SLE patients, suggesting a relevant role in the disease's pathophysiology. Hypomethylation of the IFI44L gene in resting Naive B cells suggests that epigenetic changes are established at exceedingly early stages of B cell ontogeny. Also, an alteration in SWM memory cells was observed for the first time in patients exposed to organic solvents. This opens different clinical and basic research possibilities to corroborate these findings and deepen the knowledge of the relationship between environmental exposure and SLE.

5.
Nature ; 611(7934): 139-147, 2022 11.
Article in English | MEDLINE | ID: mdl-36044993

ABSTRACT

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Subject(s)
Autoantibodies , B-Lymphocytes , COVID-19 , Humans , Autoantibodies/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Immunoglobulin G/immunology , Single-Cell Analysis , Autoantigens/immunology , Basement Membrane/immunology , Post-Acute COVID-19 Syndrome
6.
Ann Rheum Dis ; 80(9): 1190-1200, 2021 09.
Article in English | MEDLINE | ID: mdl-34083207

ABSTRACT

OBJECTIVE: While the contribution of B-cells to SLE is well established, its role in chronic cutaneous lupus erythematosus (CCLE) remains unclear. Here, we compare B-cell and serum auto-antibody profiles between patients with systemic lupus erythematosus (SLE), CCLE, and overlap conditions. METHODS: B-cells were compared by flow cytometry amongst healthy controls, CCLE without systemic lupus (CCLE+/SLE-) and SLE patients with (SLE+/CCLE+) or without CCLE (SLE+/CCLE-). Serum was analyed for autoreactive 9G4+, anti-double-stranded DNA, anti-chromatin and anti-RNA antibodies by ELISA and for anti-RNA binding proteins (RBP) by luciferase immunoprecipitation. RESULTS: Patients with CCLE+/SLE- share B-cell abnormalities with SLE including decreased unswitched memory and increased effector B-cells albeit at a lower level than SLE patients. Similarly, both SLE and CCLE+/SLE- patients have elevated 9G4+ IgG autoantibodies despite lower levels of anti-nucleic acid and anti-RBP antibodies in CCLE+/SLE-. CCLE+/SLE- patients could be stratified into those with SLE-like B-cell profiles and a separate group with normal B-cell profiles. The former group was more serologically active and more likely to have disseminated skin lesions. CONCLUSION: CCLE displays perturbations in B-cell homeostasis and partial B-cell tolerance breakdown. Our study demonstrates that this entity is immunologically heterogeneous and includes a disease segment whose B-cell compartment resembles SLE and is clinically associated with enhanced serological activity and more extensive skin disease. This picture suggests that SLE-like B-cell changes in primary CCLE may help identify patients at risk for subsequent development of SLE. B-cell profiling in CCLE might also indentify candidates who would benefit from B-cell targeted therapies.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Lupus Erythematosus, Cutaneous/immunology , Lupus Erythematosus, Systemic/immunology , Adult , Antibodies, Antinuclear , Autoantibodies/immunology , Chromatin/immunology , Chronic Disease , DNA/immunology , Female , Flow Cytometry , Humans , Immunologic Memory/immunology , Immunophenotyping , Lupus Erythematosus, Cutaneous/complications , Lupus Erythematosus, Systemic/complications , Male , Middle Aged , RNA/immunology , RNA-Binding Proteins/immunology
7.
medRxiv ; 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-33106819

ABSTRACT

An emerging feature of COVID-19 is the identification of autoreactivity in patients with severe disease that may contribute to disease pathology, however the origin and resolution of these responses remain unclear. Previously, we identified strong extrafollicular B cell activation as a shared immune response feature between both severe COVID-19 and patients with advanced rheumatic disease. In autoimmune settings, this pathway is associated with relaxed peripheral tolerance in the antibody secreting cell compartment and the generation of de novo autoreactive responses. Investigating these responses in COVID-19, we performed single-cell repertoire analysis on 7 patients with severe disease. In these patients, we identify the expansion of a low-mutation IgG1 fraction of the antibody secreting cell compartment that are not memory derived, display low levels of selective pressure, and are enriched for autoreactivity-prone IGHV4-34 expression. Within this compartment, we identify B cell lineages that display specificity to both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against glomerular basement membrane, and describe progressive, broad, clinically relevant autoreactivity within these patients correlated with disease severity. Importantly, we identify anti-carbamylated protein responses as a common hallmark and candidate biomarker of broken peripheral tolerance in severe COVID-19. Finally, we identify the contraction of this pathway upon recovery, and re-establishment of tolerance standards coupled with a concomitant loss of acute-derived ASCs irrespective of antigen specificity. In total, this study reveals the origins, breadth, and resolution of acute-phase autoreactivity in severe COVID-19, with significant implications in both early interventions and potential treatment of patients with post-COVID sequelae.

8.
Nat Immunol ; 21(12): 1506-1516, 2020 12.
Article in English | MEDLINE | ID: mdl-33028979

ABSTRACT

A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Humans , Immunophenotyping
9.
medRxiv ; 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32511635

ABSTRACT

A wide clinical spectrum has become a hallmark of the SARS-CoV-2 (COVID-19) pandemic, although its immunologic underpinnings remain to be defined. We have performed deep characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation as previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody secreting cell expansion and early production of high levels of SARS-CoV-2-specific antibodies. Yet, these patients fared poorly with elevated inflammatory biomarkers, multi-organ failure, and death. Combined, the findings strongly indicate a major pathogenic role for immune activation in subsets of COVID-19 patients. Our study suggests that, as in autoimmunity, targeted immunomodulatory therapy may be beneficial in specific patient subpopulations that can be identified by careful immune profiling.

10.
Autoimmunity ; 53(3): 114-121, 2020 05.
Article in English | MEDLINE | ID: mdl-32019373

ABSTRACT

DNA methylation as a process that regulates gene expression is crucial in immune cells biology. Global and gene specific methylation changes have been described in autoimmunity, especially in Systemic Lupus Erythematosus. These changes not only contribute to the understanding of the disease, but also some have been proposed as diagnostic or disease activity biomarkers. The present review compiles the most recent discoveries on this field on each type of immune cells, including specific changes in signalling pathways, genes of interest and its possible applications on diagnosis or treatment.


Subject(s)
Autoimmunity/immunology , DNA Methylation/immunology , Lupus Erythematosus, Systemic/immunology , Animals , Gene Expression/immunology , Humans , Signal Transduction/immunology
12.
Immunol Rev ; 292(1): 76-89, 2019 11.
Article in English | MEDLINE | ID: mdl-31755562

ABSTRACT

The maintenance of immunological tolerance of B lymphocytes is a complex and critical process that must be implemented as to avoid the detrimental development of autoreactivity and possible autoimmunity. Murine models have been invaluable to elucidate many of the key components in B-cell tolerance; however, translation to human homeostatic and pathogenic immune states can be difficult to assess. Functional autoreactive, flow cytometric, and single-cell cloning assays have proven to be critical in deciphering breaks in B-cell tolerance within autoimmunity; however, newer approaches to assess human B-cell tolerance may prove to be vital in the further exploration of underlying tolerance defects. In this review, we supply a comprehensive overview of human immune tolerance checkpoints with associated mechanisms of enforcement, and highlight current and future methodologies which are likely to benefit future studies into the mechanisms that become defective in human autoimmune conditions.


Subject(s)
Autoantigens/immunology , Autoimmune Diseases/immunology , Autoimmunity/immunology , B-Lymphocytes/immunology , Immune Tolerance/immunology , Animals , Humans , Immune System/cytology , Immune System/immunology , Lymphocyte Activation/immunology
13.
Front Immunol ; 10: 2458, 2019.
Article in English | MEDLINE | ID: mdl-31681331

ABSTRACT

The increasingly recognized role of different types of B cells and plasma cells in protective and pathogenic immune responses combined with technological advances have generated a plethora of information regarding the heterogeneity of this human immune compartment. Unfortunately, the lack of a consistent classification of human B cells also creates significant imprecision on the adjudication of different phenotypes to well-defined populations. Additional confusion in the field stems from: the use of non-discriminatory, overlapping markers to define some populations, the extrapolation of mouse concepts to humans, and the assignation of functional significance to populations often defined by insufficient surface markers. In this review, we shall discuss the current understanding of human B cell heterogeneity and define major parental populations and associated subsets while discussing their functional significance. We shall also identify current challenges and opportunities. It stands to reason that a unified approach will not only permit comparison of separate studies but also improve our ability to define deviations from normative values and to create a clean framework for the identification, functional significance, and disease association with new populations.


Subject(s)
B-Lymphocytes, Regulatory/immunology , B-Lymphocytes/immunology , Immunologic Memory/immunology , Plasma Cells/immunology , Animals , B-Lymphocytes/classification , B-Lymphocytes, Regulatory/metabolism , Cytokines/immunology , Cytokines/metabolism , Humans , Immunity, Humoral/immunology , Immunoglobulin D/immunology , Immunoglobulin D/metabolism , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Plasma Cells/classification
14.
Nat Immunol ; 20(8): 1071-1082, 2019 08.
Article in English | MEDLINE | ID: mdl-31263277

ABSTRACT

Systemic lupus erythematosus (SLE) is characterized by the expansion of extrafollicular pathogenic B cells derived from newly activated naive cells. Although these cells express distinct markers, their epigenetic architecture and how it contributes to SLE remain poorly understood. To address this, we determined the DNA methylomes, chromatin accessibility profiles and transcriptomes from five human B cell subsets, including a newly defined effector B cell subset, from subjects with SLE and healthy controls. Our data define a differentiation hierarchy for the subsets and elucidate the epigenetic and transcriptional differences between effector and memory B cells. Importantly, an SLE molecular signature was already established in resting naive cells and was dominated by enrichment of accessible chromatin in motifs for AP-1 and EGR transcription factors. Together, these factors acted in synergy with T-BET to shape the epigenome of expanded SLE effector B cell subsets. Thus, our data define the molecular foundation of pathogenic B cell dysfunction in SLE.


Subject(s)
B-Lymphocyte Subsets/pathology , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Lupus Erythematosus, Systemic/genetics , B-Lymphocyte Subsets/immunology , Chromatin Assembly and Disassembly/physiology , Early Growth Response Transcription Factors/genetics , Humans , Lupus Erythematosus, Systemic/immunology , Transcription Factor AP-1/genetics , Transcriptome/genetics
15.
Elife ; 82019 05 15.
Article in English | MEDLINE | ID: mdl-31090539

ABSTRACT

Although B cells expressing the IFNγR or the IFNγ-inducible transcription factor T-bet promote autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNγ signaling in human antibody responses is unknown. We show that elevated levels of IFNγ in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNγ, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNγ or IFNγ-producing T cells. IFNγ promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNγ signals poise B cells to differentiate by increasing their responsiveness to IL-21.


Subject(s)
B-Lymphocyte Subsets/physiology , Cell Differentiation , Epigenesis, Genetic , Interferon-gamma/metabolism , Interleukins/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , B-Lymphocyte Subsets/chemistry , B-Lymphocyte Subsets/drug effects , Gene Regulatory Networks , Humans , Lupus Erythematosus, Systemic/pathology , T-Box Domain Proteins/analysis
16.
Immunol Rev ; 288(1): 136-148, 2019 03.
Article in English | MEDLINE | ID: mdl-30874345

ABSTRACT

Chronic autoimmune diseases, and in particular Systemic Lupus Erythematosus (SLE), are endowed with a long-standing autoreactive B-cell compartment that is presumed to reactivate periodically leading to the generation of new bursts of pathogenic antibody-secreting cells (ASC). Moreover, pathogenic autoantibodies are typically characterized by a high load of somatic hypermutation and in some cases are highly stable even in the context of prolonged B-cell depletion. Long-lived, highly mutated antibodies are typically generated through T-cell-dependent germinal center (GC) reactions. Accordingly, an important role for GC reactions in the generation of pathogenic autoreactivity has been postulated in SLE. Nevertheless, pathogenic autoantibodies and autoimmune disease can be generated through B-cell extrafollicular (EF) reactions in multiple mouse models and human SLE flares are characterized by the expansion of naive-derived activated effector B cells of extrafollicular phenotype. In this review, we will discuss the properties of the EF B-cell pathway, its relationship to other effector B-cell populations, its role in autoimmune diseases, and its contribution to human SLE. Furthermore, we discuss the relationship of EF B cells with Age-Associated B cells (ABCs), a TLR-7-driven B-cell population that mediates murine autoimmune and antiviral responses.


Subject(s)
Autoantibodies/metabolism , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes/immunology , Animals , Autoantigens/immunology , Germinal Center/immunology , Humans , Lymphocyte Activation , Mice , Toll-Like Receptor 7/metabolism
17.
Immunity ; 49(4): 725-739.e6, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30314758

ABSTRACT

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptor 7/immunology , Adult , Aged , Aged, 80 and over , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Female , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Male , Middle Aged , Plasma Cells/immunology , Plasma Cells/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Transcriptome/genetics , Transcriptome/immunology , Young Adult
18.
J Immunol ; 197(10): 3841-3849, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27798155

ABSTRACT

Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4+ plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4+ peripheral blood CD19+ B cells was similar in United States adults and African adults and children; however, more 9G4+ B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4+ IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4+ B cells acquired phenotypes of atypical and classical memory B cells and 9G4+ IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4+ B cells and 9G4+ IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.


Subject(s)
Antibodies, Protozoan/blood , Autoimmunity , B-Lymphocytes/immunology , Immunoglobulin G/blood , Immunoglobulin Heavy Chains/immunology , Malaria, Falciparum/immunology , Adult , Africa, Western/epidemiology , Antibodies, Protozoan/immunology , B-Lymphocytes/chemistry , Child , Endemic Diseases , Gene Expression Regulation , Humans , Immunity, Humoral , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin M/blood , Immunoglobulin M/immunology , Malaria/epidemiology , Malaria/immunology , Malaria, Falciparum/epidemiology , Phenotype , Plasmodium falciparum/immunology , United States/epidemiology
19.
Nat Immunol ; 16(7): 755-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006014

ABSTRACT

Acute systemic lupus erythematosus (SLE) courses with surges of antibody-secreting cells (ASCs) whose origin, diversity and contribution to serum autoantibodies remain unknown. Here, deep sequencing, proteomic profiling of autoantibodies and single-cell analysis demonstrated highly diversified ASCs punctuated by clones expressing the variable heavy-chain region VH4-34 that produced dominant serum autoantibodies. A fraction of ASC clones contained autoantibodies without mutation, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment was derived from a distinct subset of newly activated naive cells of considerable clonality that persisted in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation, with prolonged recruitment of recently activated naive B cells. Our findings shed light on the pathogenesis of SLE, help explain the benefit of agents that target B cells and should facilitate the design of future therapies.


Subject(s)
Antibody Diversity/immunology , Antibody-Producing Cells/immunology , Autoantibodies/immunology , Cell Proliferation , Lupus Erythematosus, Systemic/immunology , Acute Disease , Amino Acid Sequence , Antibody Diversity/genetics , Antibody-Producing Cells/metabolism , Autoantibodies/genetics , Autoantibodies/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Base Sequence , Clone Cells/immunology , Clone Cells/metabolism , Flow Cytometry , Humans , Immunoglobulin G/blood , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Influenza Vaccines/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Molecular Sequence Data , Proteome/analysis , Proteome/immunology , Proteomics/methods , Sequence Homology, Amino Acid , Single-Cell Analysis/methods , Tandem Mass Spectrometry , Tetanus Toxoid/immunology
20.
Arthritis Res Ther ; 17: 46, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25880288

ABSTRACT

B cells are central players in multiple autoimmune rheumatic diseases as a result of the imbalance between pathogenic and protective B-cell functions, which are presumably mediated by distinct populations. Yet the functional role of different B-cell populations and the contribution of specific subsets to disease pathogenesis remain to be fully understood owing to a large extent to the use of pauci-color flow cytometry. Despite its limitations, this approach has been instrumental in providing a global picture of multiple B-cell abnormalities in multiple human rheumatic diseases, more prominently systemic lupus erythematosus, rheumatoid arthritis and Sjogren's syndrome. Accordingly, these studies represent the focus of this review. In addition, we also discuss the added value of tapping into the potential of polychromatic flow cytometry to unravel a higher level of B-cell heterogeneity, provide a more nuanced view of B-cell abnormalities in disease and create the foundation for a precise understanding of functional division of labor among the different phenotypic subsets. State-of-the-art polychromatic flow cytometry and novel multidimensional analytical approaches hold tremendous promise for our understanding of disease pathogenesis, the generation of disease biomarkers, patient stratification and personalized therapeutic approaches.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity , B-Lymphocytes/immunology , Flow Cytometry/methods , Rheumatic Diseases/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...