Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(36): 13325-13335, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37643004

ABSTRACT

To estimate the bioconcentration factor (BCF), the in vitro intrinsic clearance (CLIN VITRO,INT) from rainbow trout liver S9 fractions (RT-S9) can be applied to in vitro-in vivo extrapolation (IVIVE) models, yet uncertainties remain in model parameterization. An alternative model approach is evaluated: a regression model was built in the form log BCF = a × log Kow + b × log CLIN VITRO,INT. The coefficients a and b were fitted based on a training set of 40 chemicals. A high robustness of the coefficients and good accuracy of BCF prediction were found on independent datasets of neutral organic chemicals (measured log Kow 3.3-6.2). BCF predictions were similar to or in better agreement with in vivo BCFs compared to IVIVE models (2.4- to 2.9- vs 2.8- to 3.6-fold misprediction) for training and test sets. Species-matched models (trout, carp) did not result in improvements. This study presents the largest dataset on CLIN VITRO,INT and BCFs to assess predictivity of the RT-S9 assay. The robustness of the regression statistics on different datasets and the high statistical weight of the CLIN VITRO,INT term illustrate the predictive power of the RT-S9 assay as an important step toward regulatory acceptance to replace animal experiments.


Subject(s)
Biological Assay , Fishes , Animals , Bioaccumulation , Kinetics , Uncertainty
2.
Environ Sci Technol ; 54(15): 9483-9494, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32633948

ABSTRACT

In vitro biotransformation rates were determined for 30 chemicals, mostly fragrance ingredients, using trout liver S9 fractions (RT-S9) and incorporated into in vitro-in vivo extrapolation (IVIVE) models to predict bioconcentration factors (BCFs). Predicted BCFs were compared against empirical BCFs to explore potential major uncertainties involved in the in vitro methods and IVIVE models: (i) in vitro chemical test concentrations; (ii) different gill uptake rate constant calculations (k1); (iii) protein binding (different calculations and measurement of the fraction of unbound chemical, fU); (iv) species differences; and (v) extrahepatic biotransformation. Predicted BCFs were within 0.5 log units for 44% of the chemicals compared to empirical BCFs, whereas 56% were overpredicted by >0.5 log units. This trend of overprediction was reduced by alternative k1 calculations to 32% of chemicals being overpredicted. Moreover, hepatic in vitro rates scaled to whole body biotransformation rates (kB) were compared against in vivo kB estimates. In vivo kB was underestimated for 79% of the chemicals. Neither lowering the test concentration, nor incorporation of new measured fU values, nor species matching avoided the tendency to overpredict BCFs indicating that further improvements to the IVIVE models are needed or extrahepatic biotransformation plays an underestimated role.


Subject(s)
Oncorhynchus mykiss , Water Pollutants, Chemical , Animals , Bioaccumulation , Biotransformation , Liver/metabolism , Models, Biological , Uncertainty , Water Pollutants, Chemical/metabolism
3.
Environ Sci Technol ; 48(16): 9486-95, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25058173

ABSTRACT

Bioaccumulation in aquatic species is a critical end point in the regulatory assessment of chemicals. Few measured fish bioconcentration factors (BCFs) are available for fragrance ingredients. Thus, predictive models are often used to estimate their BCFs. Because biotransformation can reduce chemical accumulation in fish, models using QSAR-estimated biotransformation rates have been developed. Alternatively, biotransformation can be measured by in vitro methods. In this study, biotransformation rates for nine fragrance ingredients were measured using trout liver S9 fractions and used as inputs to a recently refined in vitro-in vivo extrapolation (IVIVE) model. BCFs predicted by the model were then compared to (i) in vivo BCFs, (ii) BCFs predicted using QSAR-derived biotransformation rates, (iii) BCFs predicted without biotransformation, and (iv) BCFs predicted by a well-known regression model. For fragrance ingredients with relatively low (<4.7) log K(OW) values, all models predicted BCFs below a bioaccumulation threshold of 1000. For chemicals with higher (4.7-5.8) log K(OW) values, the model incorporating measured in vitro biotransformation rates and assuming no correction for potential binding effects on hepatic clearance provided the most accurate predictions of measured BCFs. This study demonstrates the value of integrating measured biotransformation rates for prediction of chemical bioaccumulation in fish.


Subject(s)
Cosmetics/chemistry , Models, Theoretical , Oncorhynchus mykiss/metabolism , Water Pollutants, Chemical/pharmacokinetics , Animals , Biotransformation , Fishes/metabolism , In Vitro Techniques , Liver/drug effects , Liver/metabolism
4.
Environ Toxicol Chem ; 30(5): 1096-108, 2011 May.
Article in English | MEDLINE | ID: mdl-21305583

ABSTRACT

Sesquiterpenes are ubiquitous in essential oils but an assessment of their environmental behavior is still required for their use as components of natural fragrance ingredients and oral care flavors. Persistency plays a key role in hazard and risk assessment, but the current knowledge on the biodegradation of sesquiterpenes in the aquatic environment is limited. This could have important consequences for the persistent, bioaccumulative and toxic (PBT) assessment of essential oils because most of the sesquiterpene components have a log K(OW) of >4.5 and are identified as potentially bioaccumulating according to REACH screening criteria. In the present study, a persistency screening assessment was conducted on 11 cyclic sesquiterpenes selected from 10 different families of sesquiterpenes characterized by their carbon skeleton. Current biodegradation prediction models (BioWin™, BioHCwin, and Catalogic) were found to be of limited use because most of the sesquiterpenes studied were outside the structural domain of the models. Aerobic biodegradation was measured in a standard or prolonged Organisation for Economic Co-operation and Development (OECD) 301F Manometric Respirometry test for ready biodegradability. α-Bisabolol, α-humulene, ß-caryophyllene, α-cedrene, cedrol, longifolene, and δ-cadinene exceeded the pass level of 60% degradation and can be regarded as not persistent. Alpha-gurjunene, himachalenes (α, ß, γ), and (-)-thujopsene almost achieved the pass level reaching between 51% and 56% ultimate biodegradation. Although germacrene D only achieved 24% ultimate biodegradation, specific analysis at the end of the test did indicate complete primary degradation. Given that the shape of the biodegradation curves indicates poor bioavailability and ready biodegradability tests are very stringent, it is expected that all the sesquiterpenes tested in the present study would be degraded under environmental conditions.


Subject(s)
Oils, Volatile/metabolism , Sesquiterpenes/metabolism , Water Pollutants, Chemical/metabolism , Aerobiosis , Bacteria/metabolism , Biodegradation, Environmental , Oils, Volatile/analysis , Quantitative Structure-Activity Relationship , Sesquiterpenes/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...